
Adsorption properties of Thermally Treated Rice Husk for removal of Sulfamethazine 
antibiotic from pharmaceutical wastewater 

 
Abstract: Equilibrium sorption of the Thermally Treated Rice Husk (TTRH) for 
Sulfamethazine (SMT) adsorption was studied. The Physico-chemical properties of the 
modified rice husk were determined. The equilibrium sorption data were fitted into 
Langmuir, Freundlich and Dubinin–Radushkevich isotherms. Of the three adsorption 
isotherm, the R2 value of Langmuir isotherm model was the highest. Also compared to other 
isotherms the AARE coefficient for the Langmuir isotherm is low, which indicates favorable 
sorption. The maximum monolayer coverage (qm) from Langmuir isotherm model was 
determined to be 19.11 mg/g, the separation factor indicating a favorable sorption experiment 
is 0.446. Also from Freundlich Isotherm model, the sorption intensity (n) which indicates 
favorable sorption and the correlation value are 1.84 and 3.79 respectively. The mean free 
energy was estimated from Dubinin–Radushkevich isotherm model to be 9.18 KJ/mol which 
clearly proved that the adsorption experiment followed a physical process. 
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Introduction: In recent years, increasing awareness of water pollution and its far reaching 
effects has prompted concerted efforts towards pollution abatement (1-3). Pharmaceuticals 
constitute a large group of human and veterinary medicinal compounds which have long been 
used throughout the world (4, 5). The most important pharmaceuticals found in the waters are 
antibiotics, analgesics, painkillers, and hormonal drugs (6). These chemicals find their way 
into the water via sewage systems of drug manufacturing plants, hospitals, and private 
households (7, 8). Although the amount of pharmaceuticals in the aquatic environment is low, 
but many decades, the worldwide consumption of antibiotics has increased continuously with 
the aim of improving human and animal health (9). Antibiotics are widely used to as effective 
clinical pharmaceuticals to prevent and treat diseases, and they are mainly excreted into the 
aquatic and soil environments in unchanged and active forms (10, 11). 

Therefore, over the past few years these compounds are considered to be an emerging 
environmental problem. Pharmaceuticals are released to the environment through many ways, 
including municipal medical and industrial wastewater effluents (12, 13). They are extremely 
resistant to biological degradation processes and because of their continuous discharge, they 
remain in the environment for a long time; their presence in the environment has caused 
increased concern over long-term effect on human health (14, 15). Therefore, the removal of 
pharmaceuticals before disposal of the wastewater is necessary.  

Conventional metal removal techniques such as ion exchange, precipitation, membrane 
separation, electrochemical precipitation–filtration and reduction followed by chemical 
precipitation are often expensive or not sufficiently effective in the low concentration range 
(16, 17). Adsorption is one of the important procedures for the removal of trace antibiotics 
from aqueous solution. The main properties of the adsorbents for antibiotics removal are 
strong affinity and high loading capacity (18, 19). Hence, low cost adsorbents with high 
metal binding affinity need to be investigated. Waste materials from agricultural and food 
industries used as adsorbents have the dual advantage of waste reuse and low cost (20). 

Rice husks are usually used as a low-value energy resource, burned in the field, or discarded, 
which are unfavorable to environment. The processing and transformation of rice husks with 
good adsorption properties would alleviate problems of disposal and management of these 
waste by-products, while producing value added products from rice husks for water and 
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For the analysis of equilibrium data for SMT adsorption onto the TTRH, Langmuir isotherm 
model and Freundlich isotherm model were used. Langmuir isotherm model is assumed 
monolayer adsorption onto surface with a finite number of identical sites (25, 26). Linearity 
of the plots indicated the applicability of the adsorption isotherm. Weber expressed the 
essential characteristics and feasibility of the Langmuir isotherm in terms of a dimensionless 
constant, separation factor or equilibrium parameter, RL. The linear form of the Langmuir 
adsorption isotherm and RL constant can be defined by Eqs. 2 and 3. If this value ranges in 
between 0 and 1 then the adsorption process is favorable (27). All the experimental data were 
lying between 0 and 1 indicated favorable adsorption. The Freundlich isotherm is an 
empirical equation based on the adsorption on the heterogeneous surface (29, 30). The linear 
form of the Freundlich adsorption isotherm can be defined by Eq. 4. The Freundlich isotherm 
constant n was an empirical parameter that varies with the degree of heterogeneity and KF 
was related to adsorption capacity. The constants KF and n were calculated from Eq. 4 and 
Freundlich plots (Figs 2b). Table 1 indicates the Langmuir and Freundlich constants along 
with the statistical parameters. The values of n lies between 1 and 10 represent favorable 
adsorption.  

Ln qe = Ln KF +  ln Ce            (2) 

RL=                          (3)   

 = + 
 

                        (4) 

Calculation of sorption energy 

The Dubinin–Radushkevich isotherm model was used to predict the nature of adsorption 
process as physical or chemical by calculating sorption energy. The linear from of the model 
was described as (31, 32): 

Ln Cabs = Ln Xm − 𝛾ε2   

The Polanyi potential which is equal to (33, 34): 

ε= RT + Ln (1+  ) 

From Fig 2 C, a plot of Ln Cabs versus ε2 gave a straight line from which the values of 𝛾 and 
Xm for all the adsorbents were calculated. Using the value of 𝛾, the mean sorption energy, E, 
was evaluated as (35, 36): 

E = 
√ 𝛾

     

where ϵ is Polanyi potential, γ is Dubinin-Radushkevich constant, R (8.314 J/mol.K) is the 
gas constant, T (K) is the absolute temperature, Xm (mg/g) is the D-R maximum adsorption 
capacity of IPF, and E (J/mol) is mean free energy of adsorption per molecule of the 
adsorbate. 

           

The Dubinin–Radushkevich isotherm relates the heterogeneity of energies close to the 
adsorbent surface. If a very small sub-region of the sorption surface was considered and 
assumed to be approximately by the Langmuir isotherm, the quantity√ 𝛾 can be related to 
the mean sorption energy, E, which indicated the information about adsorption mechanism. If 



E<8 kJ/mol, the adsorption process was physical in nature and in the ranges from 8 to 16 
kJ/mol, it was chemical in nature. The estimated values of E are shown in Table 1 which 
suggested the adsorption process was chemical in nature.  

The average absolute value of relative error, AARE, was used to compare the predicted 
results with experimental data. This is defined as follows (37, 38): 

%AARE=  ∑  100 

Which N is the number of data points. From Table 1, it can be concluded that the adsorption 
of SMT onto TTRH follow Langmuir adsorption isotherm model (according to high value of 
the R2 coefficient or and the low value of the AARE coefficient). 

Effect of temperature and contact time 

The effect of temperature on the SMT adsorption onto TTRH was carried out at 10, 25, 40 
and 55 ◦C and the results are illustrated in Fig. 3. An increase in the temperature led to an 
increase in the adsorption capacity, qe, from 11.78 to 15.8 mg/g corresponding to a 
temperature change from 10 to 55 ◦C, indicating that SMT adsorption onto TTRH may be a 
kinetically controlled process. The higher temperature increases the reaction rate and 
decreases the particle density, which forms voids, resulting in a reduced equilibrium time (39, 
40). The obtained result is consistent with observations made by Ahmadi (10) on a study of 
the adsorption of antibiotics by nano-particle. The observed increase in the adsorption 
capacity with increasing temperature is a kinetic effect resulting from the increased monomer 
concentration in the solution. 

Contact time is another important variable in adsorption processes. Fig. 4 shows the effect of 
contact time on adsorption for various SMT concentrations. The results show that with 
increasing SMT concentration, the time required to reach equilibrium increased accordingly. 
For initial dye concentrations of 25, 50, 100 and 200 mg/L, the times reaching equilibrium 
were 45, 60, 75 and 90 min, respectively. At low initial concentrations, the SMT adsorption 
by TTRH was very intense and reached equilibrium very quickly. However, during the 
adsorption process, the adsorbent surface was progressively blocked by dye molecules, 
becoming covered after some time. The hindrance enhanced with increasing SMT 
concentration, and thus the time for adsorption equilibrium increased accordingly (41). 

When Mahvi et al (42), investigated the adsorption of tetracycline antibiotics onto Azolla, 
similar results were also observed. The time attaining equilibrium increased with increasing 
concentrations. Their study found that 75 min was sufficient to achieve complete recovery of 
the Penicillin G at initial concentrations below 100 mg/L. However, for the highest 
concentration (200 mg/L), 90 min was necessary to reach equilibrium. In this work, in order 
to achieve adsorption equilibrium, the data were measured in 90 min for adsorption 
isotherms. 

 



 

Fig.2 a. Langmuir isotherm models for the adsorption of SMT adsorption onto TTRH  

 

Fig. 2b. Freundlich isotherm models for the adsorption of SMT adsorption onto TTRH 

 

Fig. 2 C. Dubinin–Radushkevich isotherm models for the adsorption of SMT 
adsorption onto TTRH 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40

C
e/

qe
(g

/L
)

Ce (mg/L)

0

1

2

3

4

-2 -1 0 1 2

lo
g 

qe

log Ce

0

1

2

3

4

5

0.00E+00 2.00E+03 4.00E+03 6.00E+03 8.00E+03 1.00E+04

lo
g 

qe



 

 

Fig 3. Effect of contact time and temperature on the removal of SMT by TTRH (concentration: 50 
mg/L; dose: 2.5 g/L; shaking speed: 180 rpm; pH: 7) 

 

Fig 4. Effect of contact time and concentration on the removal of SMT by TTRH (Temp: 25℃; dose: 
2.5 g/L; shaking speed: 180 rpm; pH: 7) 

 

Conclusion: In this paper, investigation of the equilibrium sorption was carried out at 10-55 
oC at pH fixed 7. Other physico-chemical parameters were determined and three adsorption 
isotherm models were studied. The sorption data fitted into Langmuir, Freundlich and 
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Table 1: Langmuir, Freundlich and Dubinin–Radushkevich Isotherm constants for the adsorption of  SMT by 
TTRH 

Langmuir Freundlich Dubinin–Radushkevich 
qm TTRH b RL R2 n TTRH KF R2 qm TTRH B (×107 

mol2∙J−2) 
E R2 

19.11 1.69 0.029 0.446 0.992 1.84 14.63 3.79 0.972 13.21 26.73 6.25 9.18 0.914 



Dubunin–Radushkevich isotherms out of which Langmuir Adsorption model was found to be 
have the highest regression value and hence the best fit. It could be concluded that rice husk 
modified with thermally process is a potential and active biosorbent for removal of SMT 
from its aqueous solution and industrial waste water remediation. 
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