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Abstract

In this paper, we first propose a fast and effective region-based depth map
upsampling method, and then propose a joint upsampling and location map-free
reversible data hiding method, simpled called the JUR method. In the proposed
upsampling method, all the missing depth pixels are partitioned into three disjoint
regions: the homogeneous, semi-homogeneous, and non-homogeneous regions.
Then, we propose the depth copying, mean value, and bicubic interpolation
approaches to reconstruct the three kinds of missing depth pixels quickly,
respectively. In the proposed JUR method, without any location map overhead,
using the neighboring ground truth depth pixels of each missing depth pixel,
achieving substantial quality, and embedding capacity merits. The comprehensive
experiments have been carried out to not only justify the execution-time and
quality merits of the upsampled depth maps by our upsampling method relative to
the state-of-the-art methods, but also justify the embedding capacity and quality
merits of our JUR method when compared with the state-of-the-art methods.

Keywords: Bicubic interpolation, Color plus depth video coding, Depth map upsampling, Depth no-
synthesis-error, Quality, Reversible data hiding.

1 INTRODUCTION
The color plus depth video coding (CDVC) model [F. Shao (2012)] has been widely used in the 3D
video consumer electronics market. To reduce the bitrate requirement in CDVC, one color image is
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bundled with a synchronized smaller depth map. For example, the color image and one-quarter sized
depth map of Kinect 1 are of sizes 640×480 and 320×240, respectively. The smaller depth map is
often viewed as a low-resolution depth map. Afterwards, the low-resolution depth map is upsampled,
i.e. reconstructed, to the same size as the color image. For convenience, the color image is called
the left color image. Nowadays, it is still a challenging problem to design a fast and effective depth
map upsampling method. Based on the upsampled depth map, the warping process [C. Fehn (2004)]
is applied to map the left color image to a right warped virtual-view. One motivation of this paper is to
design a fast and effective depth map upsampling method for solving this challenging problem. The
other motivation of this paper is hightlighted in the next paragraph.

At the client side, after upsampling the depth map, because we don’t need to consider the
compression attack on the upsampled depth map. Therefore, the other motivation of this paper is
to deploy the reversible data hiding (RDH) capability into the upsampled depth map. According to
the definition of RDH [Z. Ni (2006)], after embedding the hidden data into the upsampled depth map,
not only the original upsampled depth map can be recovered completely, but the embedded hidden
data also can be extracted correctly. Without needing the location map to indicate where the hidden
data are saved in the marked depth map, it is a challenging problem to design an effective RDH
method for upsampled depth maps such that the marked upsampled depth map has good quality and
high embedding capacity. In this paper, we attempt to design a novel and effective joint depth map
upsampling and location map-free RDH method, called the JUR method, for solving this challenging
problem.

1.1 Related Works
In this subsection, the related works for depth map upsampling and RDH for upsampled depth maps
are introduced.

1.1.1 Related works for depth map upsampling

Based on the spatial filter kernel idea [F. Durand (2002)], Kopf et al. [J. Kopf (2007)] presented a
joint bilateral filtering method for upsampling depth maps. Later, Kim et al. [J. Kim (2013)] proposed
the joint trilateral filtering method considering the color value difference. To improve the method in
[B. Zhang (2008)], Jung [S. Jung (2016)] proposed a block truncation coding-based method. Yang
[et al.] [J. Yang (2010)] proposed a sparse representation approach; however, their method is rather
time-consuming.

Ham et al. [B. Ham (2015)] proposed the majorization-minimization (MM) method by considering
the structure relation between the guided color image and the depth map. Based on the Middlebury
dataset, the MM method outperforms the guided-filtering (GF) [K. He (2013)] and the method in [D.
Ferstl (2013)]. Based on the color image and the tentative estimated depth map as the guidance,
Li et al. [Y. Li (2016)] proposed a hierarchical optimization framework by progressively performing a
cascaded and guided global interpolation (CGI). Based on the ToFMark test dataset, the CGI method
outperforms the methods in [J. Kopf (2007)], [K. He (2013)], [D. Ferstl (2013)]. Considering the
correlation between the objects in the color image and the depth map via joint segmentation, Miguel
et al. [M. Tallon (2012)] proposed a robust upsampling and noise removal method for depth maps.
Choi et al. [O. Choi (2014)] first segmented the depth map into regions of smooth surfaces, and
then these regions are used to segment the color image to continuous regions and discontinuous
regions. Corresponding to the discontinuous color regions, the depth upsampling is done by the
depth-histogram-based method; otherwise, it is done by interpolating from the low-resolution depth
map.

Xie et al. [R. Feris (2016)] proposed an edge-guided upsampling (EGU) method. Their EGU
method first integrated the Markov random field technique and the training-based patch synthesis

1

user
螢光標示



British Journal of Mathematics and Computer Science X(X), XX–XX, 20XX

technique to generate a temporary upsampled depth map. Then, with the help of the modified
version of the joint bilateral filtering, EGU can effectively remedy the jagged artifact and has better
quality and edge-preserving effect. Based on the Middlebury dataset, EGU has shown better quality
when compared with the related methods [R. Zeyde (2010)], [B. Zhang (2008)], [C. Chou (2014)].
Because of involving the Markov random field and training-based patch synthesis techniques, EGU
is time-consuming. Konno et al. [Y. Konno (2016)] proposed a self-guided residual interpolation (SRI)
method. The techniques used in SRI include the displacement field-guided filtering technique [L.
Wang (2014)], the GF technique [K. He (2013)], and the bicubic interpolation (BIC). Based on the
Middlebury dataset, SRI has better quality relative to the methods in [K. He (2013)], [D. Ferstl (2013)],
[L. Wang (2014)], [J. Yang (2010)], [O. Aodha (2012)]. Chang et al. [Y. Chang (2018)] compared and
analyzed the advantages and disadvantages among the five depth map upsampling methods, namely
the bilinear, joint bilateral [J. Kopf (2007)], noise-aware filter [D. Chan (2008)], guided image filter [K.
He (2013)], discontinuity adaptive [S. B. Lee (2013)] depth upsampling methods. Furthermore, they
applied depth refinement processes to achieve the quality improvement of the upsampled depth map.

Recently, under the deep learning supporting environment, Hui et al. [T. Hui (2016)] proposed a
multi-scale guided convolutional end-to-end network (MSG-Net) for depth map upsampling. In MSG-
Net, a convolutional neural networks-based (CNN-based) multi-scale fusion strategy was presented
to complement the low-resolution depth features with the high-resolution luma features. Unlike some
super-resolution networks that require pre-upsampling of input image by BIC in advance, MSG-
net learns upsampling kernels inside the CNN. Based on the Middlebury dataset, the MSG-Net
outperforms several traditional upsampling methods and Dong et al.’s super-resolution CNN (FSRCNN)
method [C. Dong (2016)]. Kim et al. [B. Kim (2019)] learned sparse and spatially-variant kernels
for determining the weighted averaging process to transfer structural details to low-resolution depth
maps. Then, they propose a fast deformable kernel network to output sparse sets of neighbors and
the corresponding weights adaptively for each pixel, leading to depth map upsampling. Based on
the normalized convolution operation, Guo and Liu [Y. Guo (2020)] proposed a guided convolutional
layer to recover a dense depth map using a sparse and irregular depth map with a depth edge map
as guidance. Further, they proposed a convolution network by combining different related methods,
achieving better performance.

Among the eight comparative methods denoted by the set symbol “UP”, BIC [BICUBIC (1981)]
and GF [K. He (2013)] are implemented in C++; the other six related upsampling methods, MM [B.
Ham (2015)], EGU [R. Feris (2016)], SRI [Y. Konno (2016)], FSRCNN [C. Dong (2016)], MSG-Net [T.
Hui (2016)], and CGI [Y. Li (2016)], are available codes. Among these comparative methods, MM,
EGU, SRI, MSG-Net, and CGI are state-of-the-art depth map upsampling methods.

1.1.2 Related Works for reversible data hiding for depth maps

Chung et al. [W. Yang (2014)] presented a depth no-synthesis-error (D-NOSE) [Y. Zhao (2011)]
based RDH method on upsampled depth maps directly, denoted by the D-RDH method, such that
not only the original upsampled depth map can be recovered completely, but the embedded hidden
data also can be extracted correctly. In detail, if the prediction error is equal to zero, D-RDH can
embed the hidden data h with bit-length blog(upp(d) − p + 1)c into the current depth pixel. Here d
denotes the depth pixel-value and upp(d) denotes the upper bound of d in the D-NOSE allowable
interval [low(d), upp(d)]; the detailed definition of this interval is referred to the second paragraph
of Subsection 2.2. When the prediction error is equal to -1, D-RDH can embed blog(p − low(d) +
1)c − 1 bits; otherwise, D-RDH does nothing. As mentioned above, in the D-RDH method [W. Yang
(2014)] some locations of the upsampled depth map can be embedded by hidden data, but the other
locations are prohibited from embedding hidden data. Therefore, a location map is used to record
all locations where the hidden data are embedded into the upsampled depth map directly, and then
an arithmetic codec [I. Witten (1987)] is applied to compress the location map for reducing the extra
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(a) (b) (c)

Figure 1: Three possible 5×5 depth block types of each missing depth pixel
DHR(m,n). (a) Type A when m is even and n is odd. (b) Type B when m is odd and
n is even. (c) Type C when m is odd and n is odd .

memory requirement; it depletes the embedding capacity.
Recently, Shi et al. [X. Shi (2018)] presented a modified D-RDH (MD-RDH) method to embed

much more hidden data for the case when the absolute prediction error is equal to zero. For this case,
MD-RDH can embed the hidden data h with bit-length blog(upp(d)− low(d)+1)c into the depth pixel.
Like D-RDH, MD-RDH also needs a location map to record all locations where the hidden data are
embedded into the upsampled depth map directly, and it also compresses their location maps by the
lossless arithmetic codec [I. Witten (1987)] to reduce the extra memory requirement.

Due to the D-NODE model used in D-RDH and MD-RDH, the test depth maps are collected from
the Mobile3DTV dataset since this dataset provides the required parameters information needed
by the D-NOSE model. Note that the Middlebury dataset does not provide the related parameters
for the D-NOSE model. Because our proposed depth map upsampling method also takes the D-
NODE model into account, the same test depth maps in Mobile3DTV are still used to compare the
performance among the concerned methods.

1.2 Motivations
The common weakness existing in the above-mentioned related works for depth map upsampling
is the lack of taking the region classification of missing depth pixels into account. Accordingly, it
motivated us to propose a fast method to partition all the missing depth pixels into disjoint regions,
and then design a special approach to reconstruct these missing depth pixels in the same region
class quickly, also achieving good quality of the upsampled depth maps.

The common weakness existing in the related works on RDH for upsampled depth maps is the
location map overhead and the prediction error constraint, depleting the embedding capacity and
quality of the marked depth maps. Accordingly, it motivated us to propose an effective joint depth
map upsampling and RDH method, called the JUR method, achieving higher quality and embedding
capacity of the marked depth maps.

1.3 Contributions
According to the above two motivations, in this paper, we first propose a fast and effective region-
based depth map upsampling method, and then propose a joint upsampling and location map-free
RDH method, called JUR. Initially, we move each true depth pixel at location (i, j) in the low-resolution
depth map DLR to the location (2i, 2j) in the initial high-resolution depth map DHR. Here, the true
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depth pixel at the location (2i, 2j) is viewed as a ground truth depth pixel. Throughout this paper,
”true depth pixel” and ”ground truth depth pixel” denote the same thing. Therefore, 75% of the depth
pixels in DHR are the missing depth pixels to be reconstructed. The three contributions of this paper
are clarified in the following aspects.

In the first contribution, a fast and effective region-based depth upsampling method is proposed.
First, a novel approach is proposed to partition all the missing depth pixels into three regions, namely
the homogeneous region which is geometrically flat, the semi-homogeneous region which is flat from
the D-NOSE sense, and the non-homogeneous region which is geometrically non-flat. Then, in the
proposed region-based depth map upsampling method, we apply the depth copying (DC) approach,
the mean value (MV) approach, and the BIC technique to reconstruct the homogeneous, the semi-
homogeneous, and the non-homogeneous missing depth pixels, respectively, achieving clear quality,
execution-time, and perceptual effect improvement.

In the second contribution, instead of embedding hidden data into the upsampled depth map
directly by the previous D-RDH [W. Yang (2014)] and MD-RDH [X. Shi (2018)] methods, for each
missing depth pixel, according to its region class and its neighboring ground truth depth pixels, we
propose a new joint upsampling and the location map-free RDH method, called the JUR method,
achieving substantial quality, maximal embedding capacity, and embedding capacity merits relative
to the sixteen comparative combinations in UP × {D −RDH,MD −RDH}.

In the third contribution, based on the Mobile3DTV dataset, the comprehensive experimental
results demonstrated the good quality, fastest execution-time, good perceptual effect, and non-deep
learning supporting environment merits of our depth map upsampling method relative to the eight
comparative methods. Relative to the eight comparative depth upsampling methods, except the
MSG-Net method, our method has clear PSNR and SSIM merits of the upsampled depth maps.
In particular, our depth map upsampling method only needs 0.052, 0.069, and 0.074 seconds to
obtain 2x, 4x, and 8x upsampled depth maps, respectively, which is much faster than the eight
comparative methods. In addition, the experimental results also justified the quality-embedding
capacity tradeoff merit of our JUR method relative to the sixteen comparative combinations in UP
× {D − RDH,MD − RDH}. The maximal embedding capacity gain of our JUR method is at
least 0.646 bpp (bit per pixel) when compared with the sixteen comparative combinations. When the
embedding capacity is selected to be 0.1 bpp, 0.3 bpp, 0.5 bpp, and 0.7 bpp, as the base, the PSNR
gains of marked upsampled depth maps by our JUR method are at least 5 dB, 5 dB, 4 dB, and 4 dB,
respectively, relative to the sixteen comparative combinations.

The rest of this paper is organized as follows. In Section II, we propose a new and fast method
to partition all missing depth pixels into three disjoint regions. In Section III, our fast and effective
region-based map upsampling method is presented. In Section IV, our joint depth map upsampling
and location map-free RDH method, JUR, is presented. In Section V, the thorough experiments are
carried out to demonstrate the quality merit of our depth map upsampling method and the embedding
capacity as well as the quality merits of our JUR method. In Section VI, some concluding remarks
are addressed.

2 PARTITION ALL MISSING DEPTH PIXELS INTO THREE
DISJOINT REGIONS

Before presenting the proposed region-based depth map upsampling method, which will be described
in the next section, we first classify the missing depth pixels in the initial high-resolution depth map
to three regions, such as the flat, i.e. homogeneous, region, semi-flat, i.e. semi- homogeneous,
region, and non-flat, i.e. non-homogeneous, region. The motivation of this region classification is
that for each region with special geometrical property, we can apply special approach to effectively
reconstruct the missing depth pixels in that region, achieving low computational cost, image quality,
and embedding capacity merits.
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Following the above-mentioned motivation, we propose a fast linear-time, i.e. O(WH)-time,
method to partition all missing depth pixels of the initial high-resolution depth map DHR into three
disjoint regions: the homogeneous region, the semi-homogeneous region, and the non-homogeneous
region. Here, the size of DHR is assumed to be W×H. The reader is suggested to refer to [T. Cormen
(2009)] for the definition of Big-O complexity.

2.1 Fast Identify the Homogeneous Missing Depth Pixels
For each missing depth pixel DHR(m,n), we put a 5×5 window W centered at the location (m,n) to
cover its neighboring true depth pixels in order to determine the region class of DHR(m,n).

2.1.1 Definition of homogeneous missing depth pixel

There are three possible block types, as shown in Fig. 1, where the true depth pixels covered by
W are marked in red. Let k and l denote non-negative integers. The block type of DHR(m,n) is
determined by

Type =


type A when m = 2k and n = 2l + 1

type B when m = 2k + 1 and n = 2l

type C when m = 2k + 1 and n = 2l + 1

(2.1)

Definition 1. For one missing depth pixel DHR(m,n), when all the true depth pixel values covered
by the 5×5 window W centered at the location (m,n) are the same, DHR(m,n) is in a flat region and
is identified as a homogeneous missing depth pixel.

As shown in Fig. 1(c), for type C block, by Definition 1,DHR(m,n) is identified as a homogeneous
missing depth pixel because of DHR(m − 1, n − 1) = DHR(m − 1, n + 1) = DHR(m + 1, n − 1) =
DHR(m + 1, n + 1). Considering Figs. 1(a)-(c), in the worst case, it takes 4.3 (= (5 + 5 + 3)/3)
comparisons to check whether Condition 1 is held or not.

2.1.2 Speed up the checking of Condition 1

We propose an early jumping technique and a look-ahead pruning technique to speed up the checking
of Condition 1.

2.1) Early jumping technique: Based on the column-major and right-to-left scanning order, by the
early jumping technique, if the first two neighboring true depth pixels are not equal, Condition 1 is
false for DHR(m,n) and we stop the subsequent checking step; otherwise, we continue with the next
checking step. For the example in Fig. 1(a), because the number of possible checking steps is 1, 2,
3, 4, or 5, the average number of checking steps for block type A is 3 (= (1 + 2 + 3 + 4 + 5)/5). By
the same argument, the average number of checking steps for block type B is 3 (= (1 + 2 + 3 + 4 +
5)/5); the average number of checking steps for block type C is 2 (= (1 + 2 + 3)/3). Consequently,
based on the early jumping technique, on average, it takes only 2.7 (= (3 + 3 + 2)/3) comparisons
to determine whether Condition 1 is held for one missing depth pixel.

2.2) Look-ahead pruning technique: Furthermore, we adopt a look-ahead pruning technique to
determine whether we should discard the checking of Condition 1 for the subsequent missing depth
pixel(s). For the example in Fig. 1(a), if the first two neighboring true depth pixels, DHR(m− 2, n+1)
and DHR(m,n+ 1), are not equal, not only do we stop the remaining checking of Condition 1 for the
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Table 1: D-NOSE Allowable Intervals for Balloons Video Sequence.
Depth value d as index 0 1 ... 98 99 100 101 ... 254 255

low(d) 0 0 ... 91 91 91 101 ... 250 250
upp(d) 5 3 ... 100 100 100 111 ... 255 255

Mean of D-NOSE interval 3 3 ... 96 96 96 106 ... 253 253

missing depth pixel DHR(m,n), but we also discard the checking of condition 1 for the next missing
depth pixel DHR(m,n+ 2). In the same way, for the example in Fig. 1(b), if the first two neighboring
true depth pixels,DHR(m−1, n+2) andDHR(m+1, n+2), are not equal, we can discard the checking
of Condition 1 for the next four missing depth pixels, DHR(m,n+1), DHR(m,n+2), DHR(m,n+3)
and DHR(m,n + 4). For the example in Fig. 1(c), if the first two neighboring true depth pixels,
DHR(m− 1, n+1) and DHR(m+1, n+1), are not equal, we can discard the checking of condition 1
for the next three missing depth pixels, DHR(m,n+1), DHR(m,n+2), and DHR(m,n+3). Besides
the first two neighboring true depth pixels disussed above, the other two consecutive neighboring true
depth pixels can be treated in the same way to speed up the checking of Condition 1.

Based on the Mobile3DTV dataset, the average ratio of the number of the homogeneous missing
depth pixels over that of all missing depth pixels in DHR is 73%. As for this case, we apply the
proposed simple depth copying (DC) approach to construct each identified homogeneous missing
depth pixel quickly, which will be formally described in Subsection III.A. Due to only considering the
neighboring true depth pixels of DHR(m,n) to identify the pixel class of DHR(m,n), we thus adopt
the smallest window, i.e. the 5×5 window. On the contrary, a larger window decreases the ratio of
the homogeneous missing depth pixels, leading to no quality improvement.

2.2 Fast Identify the Semi-homogeneous Missing Depth Pixels
Because “whether the missing depth pixel DHR(m,n) is semi-homogeneous or not” is dependent
on the D-NOSE condition of the neighboring true depth pixels of DHR(m,n), we first introduce the
preliminary of the D-NOSE model.

Let Zl(m,n) denote the raw depth value at the location (m,n) and let Znear and Zfar denote the
nearest and farthest raw depth values in the depth map, respectively. The quantized depth value of
Zl(m,n) [P. Kauff (2002)] is expressed by

D(m,n) = b255× Znear

Zl(m,n)
× Zfar − Zl(m,n)

Zfar − Znear
+ 0.5c (2.2)

where the floor function bwc denotes the largest integer smaller than or equal to w. The idea behind
the D-NOSE model is that one depth value D(m,n) can be perturbed to the other depth value
D′(m,n) such that this perturbation causes no warping error provided thatD′(m,n) is in the D-NOSE
allowable interval [low(D(m,n)), upp(D(m,n))] where

low(D(m,n)) =

⌈
d−1(

d(d(D(m,n))− λ)×Ne − 1

N
+ λ)

⌉

upp(D(m,n)) =

⌊
d−1(

d(d(D(m,n))− λ)×Ne
N

+ λ)

⌋ (2.3)

with λ-rounding and the precision 1/N . In the term “ 1
N
d(d(D(m,n)) − λ) × Ne”, the ceiling function

dwe denotes the smallest integer greater than or equal to w, λ denotes the λ-rounding horizontal
disparity of d(D(m,n)), and d−1 denotes the inverse function of d. Here, the horizontal disparity
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function d(D(m,n)) is defined by

d(D(m,n)) =
f × lb

Q−1(D(m,n))
(2.4)

where f denotes the focal length of the real camera and lb denotes the baseline length between the
real camera and the virtual camera. The inverse function Q−1(D(m,n)) is defined by

Q−1(D(m,n)) = Zl(m,n)

=
1

D(m,n)
255

( 1
Znear

− 1
Zfar

) + 1
Zfar

(2.5)

Let us take one real example to explain how the D-NOSE model works. The example is taken
from the Balloons sequence with Zl(m,n) = 1149.02, λ = 0.5, N = 1, f = 2241.25607, lb = 5,
Znear = 448.251214, and Zfar = 11206.280350. By Eq. (2.2), the quantized depth pixel of Zl(m,n)
is D(m,n) = 93. By Eq. (2.4), the calculated horizontal disparity value is d(D(m,n)) = 9.75294.
Further, for D(m,n) = 93, by Eq. (2.3), the D-NOSE allowable interval is [low(93), upp(93)] = [91,
100].

The D-NOSE model suggests that the value of D(m,n) can be perturbed from 93 to any value
D′(m,n) ∈ [91, 100], causing no warping error. On the other hand, for D(m,n) and D′(m,n), the
warping function maps the left color image pixel I(m,n) to the same location (m,n0) in the right
virtual-view, where (n0−n) denotes the horizontal disparity. After explaining the D-NOSE model, the
semi-homogeneous missing depth in the flat region from the D-NOSE sense is defined below.

Definition 2. For one missing depth pixel DHR(m,n), when all of its neighboring true depth pixel
values covered by the 5×5 window W have the same D-NOSE allowable interval, DHR(m,n) is in
a flat region from the D-NOSE sense and DHR(m,n) is identified as a semi-homogeneous missing
depth pixel.

In order to quickly identify whether one missing depth pixel is semi-homogeneous or not, Table 1
is built up in advance to record the 256 D-NOSE allowable intervals for depth values over the integer
interval [0, 255], where “d” denotes the quantized depth value. For d = 93, by Table 1, its D-NOSE
allowable interval, [91, 100], can be accessed in O(1) time.

To further reduce the identification time, one extra row is added in Table 1 to record the mean of
each D-NOSE allowable interval. For example, suppose the depth block type of DHR(m,n) is type C
and the four neighboring true depth pixel values are DHR(m−1, n−1) = 93, DHR(m−1, n+1) = 98,
DHR(m+1, n− 1) = 96, and DHR(m+1, n+1) = 100. From Table 1, all the mean values of the four
corresponding D-NOSE allowable intervals are 96, implying that DHR(m,n) is a semi-homogeneous
depth pixel. Based on the test depth maps, the average ratio of the number of the semi-homogeneous
missing depth pixels over that of all missing depth pixels in DHR is 12%.

Using the early jumping technique and the look-ahead pruning technique described in Subsection
II.A, we also can speed up the checking of Definition 2. In detail, based on the early jumping
technique, for one missing depth pixel, on average, it takes only 2.7 (= (3 + 3 + 2)/3) D-NODE value
comparisons to check whether Condition 2 is held or not. Using the look-ahead pruning technique,
we may discard the checking of condition 2 for the subsequent missing depth pixel(s).

2.3 Identify the Non-homogeneous Missing Depth Pixels
Let Sm, Sh, and Sn denote the set of all missing, all homogeneous missing, all semi-homogeneous
missing, and all non-homogeneous missing depth pixels in DHR, respectively. We thus have Sn =
Sm\Sh\Ss where the operator “\” denotes difference operation in set theory. The non-homogeneous
missing depth pixel is defined below.
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Definition 3. For one missing depth pixelDHR(m,n), when Conditions 1-2 are violated, it is identified
as a non-homogeneous missing depth pixel.

On the other hand, for one missing depth pixel, if Conditions 1-2 are false, it should be a non-
homogeneous missing depth pixel. Based on the test depth maps, the average ratio of |Sn| over |Sm|
is 15%.

3 THE PROPOSED REGION-BASED DEPTH MAP UPSAMPLING
METHOD

We first depict the sketch of our region-based depth map upsampling method with one example. Fig.
2(a) illustrates one given low-resolution depth map example. After constructing all homogeneous
missing depth pixels by our depth copying (DC) approach, the reconstructed depth pixels are depicted
in the flat regions of Fig. 2(b). Further, after reconstructing all semi-homogeneous depth pixels by
our mean value (MV) approach, Fig. 2(c) illustrates the reconstructed depth pixels appearing in the
semi-flat regions. Using BIC, the reconstructed depth pixels appear in the non-flat regions of Fig.
2(d). Fig. 2(e) illustrates the final upsampled depth map of Fig. 2(a) by our “DC+MV+BIC” method.

In the next three subsections, our region-based depth map upsampling method is described in
detail.

3.1 Constructing Homogeneous Missing Depth Pixels by the Depth
Copying (DC) Approach

For one homogeneous missing depth pixel DHR(m,n) in Sh, by our DC approach, it is constructed
by

DHR(m,n) =


DHR(m,n− 1) for type A block
DHR(m− 1, n) for type B block
DHR(m− 1, n− 1) for type C block

(3.1)

It takes only one assigment operation in Eq. (3.1). Because the average ratio of |Sh| over |Sm| is
73%, the proposed simple DC approach achieves low computational cost and high reconstruction
accuracy merits.

3.2 Constructing Semi-homogeneous Missing Depth Pixels by the Mean
Value (MV) Approach

For one semi-homogeneous missing depth pixelDHR(m,n) in Ss, by our MV approach, it is constructed
by

DHR(m,n)

=


∑

k∈{−2,0,2},l∈{−1,1}D
HR(m+ k, n+ l)/6 for type A block∑

k∈{−1,1},l∈{−2,0,2}D
HR(m+ k, n+ l)/6 for type B block∑

k∈{−1,1},l∈{−1,1}D
HR(m+ k, n+ l)/4 for type C block

(3.2)

On average, it only takes 5.3 (= (6 + 6 + 4) / 3) arithmetic operations by Eq. (3.2) to reconstruct
the value of DHR(m,n). By our MV approach, the reconstructed depth value of DHR(m,n) in Ss has
the same D-NOSE allowable interval as that of any neighboring true depth pixel covered by the 5×5
window, causing no warping error.

8
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(a) (b) (c)

(d) (e)

Figure 2: The sketch of our region-based depth map upsampling method. (a)
The given low-resolution depth map. (b) The reconstructed homogeneous depth
pixels, which occupy 73% of all reconstructed pixels, by our DC copying approach.
(c) The reconstructed semi-homogeneous depth pixels, which occupy 12% of
all reconstructed pixels, by our MV approach. (d) The reconstructed non-
homogeneous depth pixels, which occupy 15% of all reconstructed pixels, by using
BIC. (e) The constructed high-resolution depth map by our “DC+MV+BIC” method.
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3.3 Constructing Non-homogeneous Missing Depth Pixels by a Bicubic
Interpolation (BIC) Related Approach

In this subsection, we apply a bicubic interpolation (BIC) to reconstruct the non-homogeneous missing
depth pixels. In addition, we also investigate the BIC- and luma guided-based (BLG-based) fusion
approach to reconstruct the non-homogeneous missing depth pixels.

When using BIC to construct the non-homogeneous depth pixel DHR(m,n), we perform the 9×9
BIC on the true depth pixels covered by a 9×9 window W centered at the location (m,n) to construct
the value of DHR(m,n), denoted by DHR

BIC(m,n).
We now investigate an alternate BIC- and LG-based (BLG-based) fusion approach to reconstruct

the non-homogeneous missing depth pixels of DHR(m,n). Suppose the block type of DHR(m,n)
is type C, as shown in Fig. 1(c). The four neighboring true depth pixel values, DHR(m − 1, n − 1),
DHR(m−1, n+1), DHR(m+1, n−1), and DHR(m+1, n+1), and the four corresponding co-located
luma pixel values, L(m− 1, n− 1), L(m− 1, n+ 1), L(m+ 1, n− 1), and L(m+ 1, n+ 1), constitute
the following four linear relations:

L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1

[ab
]
=


DHR(m− 1, n− 1)
DHR(m− 1, n+ 1)
DHR(m+ 1, n− 1)
DHR(m+ 1, n+ 1)

 (3.3)

where in Eq. (3.3), we have only two parameters, a and b, to be solved, but there are four equations.
Eq. (3.3) is also called an over-determined system.

To solve the over-determined system, we apply the linear least squares fitting technique to find
the best fitting straight line in terms of the slope “a” and the intercept “b” through the four known points,
(DHR(m− 1, n− 1), L(m− 1, n− 1)), (DHR(m− 1, n+ 1), L(m− 1, n+ 1)), (DHR(m+ 1, n− 1),
L(m + 1, n − 1)), and (DHR(m + 1, n + 1), L(m + 1, n + 1)). By the widely used normal equation
formula [D. Watkins (1991)], the parameter-pair (a, b) is solved by

[
a
b

]
=



L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1


T 

L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1



−1


L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1


T 

DHR(m− 1, n− 1)
DHR(m− 1, n+ 1)
DHR(m+ 1, n− 1)
DHR(m+ 1, n+ 1)


(3.4)

By Eq. (3.4), the estimated value of DHR(m,n) is given by

DHR
LG (m,n) = a× L(m,n) + b (3.5)

Further, we fuse the two estimated values, DHR
BIC(m,n) and DHR

LG (m,n) by computing

DHR
BLG(m,n) =W1(m,n)×DHR

BIC(m,n)

+W2(m,n)×DHR
LG (m,n)

(3.6)

where the two weights W1(m,n) and W2(m,n) can be determined by the error-prediction based
technique, as described in what follows. Before constructing the error maps of DHR

BIC(m,n) and
DHR

LG , we first perform the 4×4 BIC on DHR
BIC(m,n) and DHR

LG to obtain the two downsampled results
DLR

BIC(m,n) and DLR
LG, respectively. Then, the two error maps are calculated by

err(DLR
BIC) = DLR −DLR

BIC

err(DLR
LG) = DLR −DLR

LG

(3.7)

10
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Performing the 9×9 BIC on err(DLR
BIC) and err(DLR

LG), the error maps of DHR
BIC and DHR

LG ,
err(DHR

BIC) and err(DHR
LG ) are obtained. The two weights W1(m,n) and W2(m,n) in Eq. (3.6) are

calculated by

W1(m,n) =
(e−err(DHR

BIC(m,n)))−1

(e−err(DHR
BIC

(m,n)))−1 + (e−err(DHR
LG

(m,n)))−1

W2(m,n) =
(e−err(DHR

LG (m,n)))−1

(e−err(DHR
BIC

(m,n)))−1 + (e−err(DHR
LG

(m,n)))−1

(3.8)

Then, by Eq. (3.6), the fused result of DHR(m,n) can be obtained. According to our experimental
results, for upsampling one depth map, on average, the PSNR gain of the “DC+MV+BLG” variant over
our “DC+MV+BIC” method is about 0.02 dB, but the execution-time cost of “DC+MV+BLG” is more
than two times of our “DC+MV+BIC” method. Therefore, in the experiment section, we only compare
our “DC+MV+BIC” method with the other comparative methods.

4 THE PROPOSED JOINT UPSAMPLING AND LOCATION
MAP-FREE REVERSIBLE DATA HIDING METHOD: JUR

From Definitions 1-3 for missing depth pixels, we observe that for each missing depth pixel, its
neighboring ground truth depth pixels, i.e. those true depth pixels around the missing depth pixel,
provides an opportunity to develop a joint depth map upsampling and location map-free RDH method,
called the JUR method. Note that the locations of these ground truth depth pixels are prohibited from
embedding hidden data; all the other missing depth pixels can be upsampled and embedded by
hidden data simultaneously. As mentioned in the first paragraph of Subsection 1.3, each ground
truth depth pixel is located at the position (2i, 2j) and each marked depth pixel is located at the
other position, so we don’t need a location map to record where the hidden data are embedded
into the upsampled depth map. Besides inheriting the quality merit of our region-based depth map
upsampling method, in particular, JUR does not need any location map, achieving higher embedding
capacity of the marked depth maps.

4.1 Upsampling and Embedding Process
Following the definition of the D-NOSE allowable interval [low(d), upp(d)] in Eq. (2.3), to guarantee
no warping error in the right warped virtual-view, if we want to embed the hidden data h into the
upsampled depth pixel DHR(m,n), DHR(m,n) can be perturbed by

DHR(m,n) = low(DHR(m,n)) + h (4.1)

subject to the constraint: low(DHR(m,n)) + h 6 upp(DHR(m,n)), leading to no warping error.
On the contrary, if the constraint is violated, it leads to low(DHR(m,n)) + h > upp(DHR(m,n)),
producing the warping error. Accordingly, the maximal bit-string length of h is equal to

L(h) = blog(upp(DHR(m,n))− low(DHR(m,n)) + 1)c bits (4.2)

By Eq. (4.2), the hidden data h is thus taken from the first L(h) bits from the current hidden string H,
achieving the maximal data embedding for each reconstructed depth pixel DHR(m,n).

The proposed upsampling and embedding process in JUR is realized by the procedure “Procedure:
Upsampling and Embedding Process”.

For example, in Fig. 1(a), by Step 1, the current missing depth pixel DHR(m,n) is identified
to be in Ss. After performing our MV approach on DHR(m,n), the upsampled depth pixel value of
DHR(m,n) is 96 by Eq. (3.2). By Steps 2-3, the bit-length of h is equal to 3 (= L(96) = blog(upp(96)−

11
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low(96) + 1)c = blog(100− 91 + 1)c). We thus take the first three bits from H = (01100011)2, and the
hidden data to be embedded is equal to h = (011)2. Consequently, the value of the marked depth
pixel DHR(m,n) is set to 94 (= low(96) +h = 91 + 3). In addition, the hidden binary string becomes
H = (00011)2.

Procedure: Upsampling and Embedding Process

Input: Current missing depth pixel DHR(m,n) and the current hidden binary string H to be
embedded.

Output: Marked depth pixel DHR(m,n).
Step 1: For DHR(m,n), we perform our depth map upsampling method to obtain its
upsampled depth pixel, still denoted by DHR(m,n).
Step 2: By Table 1, the D-NOSE allowable interval of DHR(m,n), [low(DHR(m,n)),
upp(DHR(m,n))], is accessed.
Step 3: By Eq. (4.1), DHR(m,n) is perturbed to DHR(m,n) = low(DHR(m,n)) + h in
which the hidden data h with length L(h) (see Eq. (4.2)) is taken from the first L(h) bits of H.
Step 4: We report DHR(m,n) as the marked depth pixel. In addition, we cutoff the first
L(h) bits from H.

4.2 Extracting and Recovering Process

Basically, the extracting and recovering process in JUR is the reverse of the Procedure: upsampling
and embedding process. Although the upsampled depth pixels are modified due to data embedding,
the neighboring ground truth depth pixels of each marked depth pixel are always not modified and
retain their original values. Therefore, in the proposed extracting and recovering process, for each
marked depth pixel at location (m,n), based on its ground truth depth pixels covered by a 5×5 window
centered at location (m,n), we repeat the depth upsampling process, as described in Section 3, to
obtain the constructed value of DHR(m,n).

Furthermore, based on Table 1, we take the constructed depth value DHR(m,n) as the key to
query the values of low(DHR(m,n)) and upper(DHR(m,n)). By Eq. (4.2), the maximal bit-string
length of the hidden data h can be calculated, and then the hidden data h with bit-length L(h) can
be correctly extracted by subtracting the value low(DHR(m,n)) from the marked depth pixel value
DHR(m,n). Note that the upsampled depth pixel at location (m,n) can be recovered correctly by
performing the depth map upsampling on its neighboring ground truth depth pixels again, and this is
the reason why our JUR method can recover the original upsampled depth map, achieving the RDH
goal. The proposed extracting and recovering process for each marked depth pixel DHR(m,n) is
realized by the procedure “Procedure: Extracting and Recovering Process”.

Returning to the data hiding example introduced in the last paragraph of Subsection 4.1, we konw
that the value of the marked depth pixel DHR(m,n) is 94. We now take it as the input to explain why
the proposed extracting and recovering procedure can extract the hidden data h correctly and recover
the originally upsampled depth pixel completely. After performing Step 1 of the above procedure
extracting and recovering procedure on the location (m,n), the recovered upsampled depth pixel
value at location (m,n) is 96. In Step 2, by Table 1, we have low(96) = 91; by Eq. (4.2), the value
of the bit-length L(96) is equal to 3. From Eq. (4.1), we know that the hiding data h is equal to 3
(=94-91). Furthermore, the value of L(96) (= 3) indicates that the hidden data h is of 3-bit length.
Because the value of h is 3 and the bit-length of h is 3, the hidden data h can be correctly extracted
as (011)2. Consequently, the hidden data h and the originally upsampled depth pixel can be correctly
extracted and recovered, respectively.

12
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 3: The visual effect comparison for the upsampled depth map “Balloons”.
(a) The ground-truth high-resolution depth map. (b) The magnified depth sub-map
cutoff from Fig. 3(a). (c) BIC [BICUBIC (1981)]. (d) GF [K. He (2013)]. (e) MM [B.
Ham (2015)]. (f) EGU [R. Feris (2016)]. (g) SRI [Y. Konno (2016)]. (h) FSRCNN [C.
Dong (2016)]. (i) MSG-Net [T. Hui (2016)]. (j) CGI [Y. Li (2016)]. (k) Our method.
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Procedure: Extracting and Recovering Process

Input: Marked depth pixel DHR(m,n).
Output: Recovered upsampled depth pixel DHR(m,n) and the extracted hidden data h.
Step 1: According to the neighboring ground truth depth pixels of the marked depth pixel
DHR(m,n), by Definitions 1-3, we can identify the region class of the missing depth pixel at
the location (m,n) to be in Sh, Ss, or Sn. Then, based on the neighboring ground truth
depth pixels and the identified region class at the location (m,n), we apply the
corresponding depth pixel upsampling approach, DC, MV, or BIC, to reconstruct the depth
value at the location (m,n), outputting as the recovered upsampled depth pixel DHR(m,n).
Step 2: Using the value of the recovered upsampled depth pixel DHR(m,n) as a key, by
Table 1, The value of low(DHR(m,n)) can be accessed. By Eqs. (4.1)-(4.2), the extracted
hidden data h with bit-length L(h) is reported by subtracting the value low(DHR(m,n))
from the input marked depth pixel value DHR(m,n).

Table 2: PSNR, SSIM, AND EXECUTION-TIME COMPARISON AMONG THE
CONCERNED DEPTH MAP UPSAMPLING METHODS.

PSNR SSIM Execution-time (seconds)
2x 4x 8x 2x 4x 8x 2x 4x 8x

BIC [16] 46.36 40.73 36.55 0.9922 0.9791 0.9662 0.21 0.27 0.28
GF [13] 45.03 41.29 37.87 0.9873 0.9763 0.9662 0.097 0.119 0.123
MM [12] 45.8 40.65 36.43 0.9814 0.9679 0.9527 97.96 95.62 99.43
EGU [30] 47.25 42.84 38.1 0.9928 0.9837 0.964 1001.43 2453.69 4036.33
SRI [18] 47.51 41.33 37.06 0.9935 0.9811 0.9687 8.33 10.44 10.91

FSRCNN [5] (GPU) 37.13 34.45 - 0.9425 0.9342 - 71.9 19.07 -
MSG-Net [14] (GPU) 55.35 49.76 45.03 0.9979 0.9932 0.9848 0.37 0.54 0.62

CGI [20] 42.63 38.99 36.28 0.9796 0.9674 0.9562 0.81 0.99 1.05
DC+MV+BI 48.66 43.86 40.2 0.9943 0.9859 0.9755 0.052 0.069 0.074

5 EXPERIMENTAL RESULTS

Following the same performance evaluation way used in the previous depth upsampling methods, the
first set of experiments is used to compare the PSNR, SSIM, and the visual effect of the upsampled
depth maps by the concerned methods. In addition, the actual time cost for each concerned depth
map upsampling method is reported, indicating the lowest computational cost merit of our “DC+MV+BIC”
method. The second set of experiments is used to justify the quality and embedding capacity merits
of the marked depth maps by our JUR method. For fairness, we also apply the comparative RDH
methods, D-RDH and MD-RDH, to the upsampled depth maps generated by some concerned depth
map upsampling methods.

The execution codes of our “DC+MV+BIC” and JUR methods can be accessed from the website
in [Execution code (2019)]. BIC [BICUBIC (1981)] and GF [K. He (2013)] are implemented in Visual
C++ 2017. The available codes for the six concerned methods, MM [B. Ham (2015)], EGU [R. Feris
(2016)], SRI [Y. Konno (2016)], FSRCNN [C. Dong (2016)], MSG-Net [T. Hui (2016)], and CGI [Y.
Li (2016)], are implemented in Matlab R2013a. Under the deep learning supporting environment,
MSG-Net and FSRCNN are implemented on the platform: GeForce GTX 1080 Ti GPU with 24 GB
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of RAM based on the Caffe framework. All the related experiments have been performed under the
Windows 10 operating system.

5.1 Performance Comparison among the Concerned Depth Map Upsampling
Methods

In this subsection, the three upsampling ratios, “2×”, “4×”, and “8×”, are considered in the experiments.
Here, “2×”, “4×”, and “8×” mean that the size of the upsampled depth map is four times, 16 times,
and 64 times, respectively, as large as the low-resolution depth map. Note that there are only two
upsampling ratios “2×” and “4×” considered in the available code of FSRCNN. Differing from the GF
and our “DC+MV+BIC” methods, the other concerned upsampling methods perform the upsampling
ratio “4×” and “8×” directly instead of completing the upsampling ratio “2×” and “4×”, respectively, in
advance. In our experiment, the dataset Mobile3DTV with 6 videos are used and for each video, we
take the first ten frames in the test.

5.1.1 PSNR and SSIM comparison

To evaluate the quality of the upsampled depth maps by the concerned methods, the PSNR and SSIM
metrics are used. SSIM is measured by the joint effects of the luminance, contrast, and structure
similarity preserving effect between the high-resolution ground-truth depth map and the upsampled
depth map. We suggest that the readers refer to [Z. Wang (2004)] for the detailed definition of SSIM.
From Table 2, we observe that in terms of PSNR and SSIM, MSG-Net is in first place in red; our
“DC+MV+BIC” method is in second place in green. In terms of PSNR, EGU is in third place in blue
and SRI is in fourth place.

5.1.2 Visual effect comparison

Given the ground-truth high-resolution depth map shown in Fig. 3(a), the magnified depth sub-
map cut off from the ground-truth upsampled depth map in Fig. 3(a) is shown in Fig. 3(b). After
performing BIC, GF, MM, EGU, SRI, FSRCNN, MSG-Net, CGI, and our “DC+MV+BIC” method on
the downsampled depth map of Fig. 3(b), Figs. 3(c)-(k) demonstrate the eight upsampled depth
maps. As shown in the regions marked by red ellipses, MSG-Net and our method have the best
visual effect relative to Fig. 3(b). However, due to the training effect, the boundary part in Fig. 3(i) by
MSG-Net is too sharp relative to Fig. 3(b). For detailed visual comparison by the concerned methods,
we suggest that readers refer to the website [Experimental results (2019)].

5.1.3 Execution time comparison

Because the two concerned CNN-based methods, FSRCNN and MSG, are realized by GPU in a
parallel way and the other seven concerned methods are realized by CPU in a sequential way, it is
unfair to represent their complexity in terms of big-O notation [T. Cormen (2009)]. Accordingly, in
terms of the execution-time in seconds per map required by each concerned method, on average,
our “DC+MV+BIC” method only takes 0.0651 (= (0.0524 + 0.069 + 0.074)/3) seconds and is in first
place; GF takes 0.113 seconds and is in second place. BIC takes 0.26 seconds and is in third place;
MSG-Net takes 0.51 seconds and is in fourth place; CGI and SRI are in fifth place and sixth place,
respectively.
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Table 3: MAXIMAL EMBEDDING CAPACITY COMPARISON AMONG THE
CONCERNED RDH COMBINATIONS.

Combination ME-capacity (bpp)

BIC D-RDH 0.798
MD-RDH 0.988

GF D-RDH 0.698
MD-RDH 0.898

MM D-RDH 0.696
MD-RDH 0.864

EGU D-RDH 0.731
MD-RDH 0.933

SRI D-RDH 0.718
MD-RDH 0.893

FSRCNN D-RDH 0.581
MD-RDH 0.771

MSG-Net D-RDH 0.717
MD-RDH 0.866

CGI D-RDH 0.730
MD-RDH 0.900

BC+MV+BI D-RDH 0.731
MD-RDH 0.882

JUR 1.634
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Table 4: MAXIMAL EMBEDDING CAPACITY IMPROVEMENT AND PSNR DECAY
FOR “JUR + HISTOGRAM SHIFTING”.

JUR JUR + Histogram Shifting
ME-capacity (bpp) 1.63 1.88

PSNR 45.44 43.78

5.2 Embedding Capacity and Quality Merits of Our JUR Method
To compare the performance of the concerned RDH methods for the upsampled depth maps, first,
the maximal embedding capacity (ME-capacity), which is expressed as the maximal number of the
average hidden bits saved in one depth pixel, is reported. For fairness, we perform each comparative
RDH method on the upsampled depth maps generated by all the concerned upsampling methods.
Note that the location maps used in D-RDH and MD-RDH have been compressed by the arithmetic
codec.

5.2.1 Maximal embedding capacity comparison

Based on the Mobile3DTV dataset, Table 3 tabulates the ME-capacity comparison of all the concerned
RDH combinations. Because of the location map-free merit in JUR, our JUR method has the highest
ME-capacity in boldface. MD-RDH is in second place and outperforms D-RDH. In addition, based on
the same test depth maps, we apply the histogram shifting-based RDH technique [Z. Ni (2006)] on the
marked depth maps generated by JUR to further enhance the ME-capacity of our JUR method. For
convenience, this enhancement way is called the “JUR + Histogram Shifting” method. As shown in
Table 4, the experimental data demonstrated that the ME-capacity gain of “JUR + Histogram Shifting”
over JUR is 0.25 (= 1.88 − 1.63) bpp and the PSNR loss is 1.66 (= 45.44 − 43.78) dB, leading to
quality decay. Since the histogram shifting method is also a RDH method, the marked depth map
by performing our JUR method can be correctly recovered from the marked map by performing the
“JUR + Histogram Shifting” method; therefore, the problem of overriding depth copying pixels will
not happen. Since the histogram shifting method is also a RDH method, the marked depth map
by performing our JUR method can be correctly recovered from the marked map by performing the
“JUR + Histogram Shifting” method; therefore, the problem of overriding depth copying pixels will not
happen.

5.2.2 PSNR comparison for different values of embedding capacity

Since the minimum of the ME-capacity values for all the concerned RDH combinations in Table 3 is
about 0.7, we thus select the four embedding capacity (E-capacity), 0.1, 0.3, 0.5, and 0.7, as the
base to compare PSNR of all the concerned RDH combinations. From Table 5, we observe that for
each fixed E-capacity value, our JUR method has the highest PSNR value in boldface among all the
concerned RDH combinations; the MD-RDH method is in second place and always outperforms D-
RDH. Fig. 4 depicts the quality-E-capacity tradeoff comparison among ten considered combinations,
each depth map upsampling method associated with the MD-RDH method. From the highest curve
in Fig. 4, we observe that the proposed JUR method has the best quality-E-capacity tradeoff among
the considered combinations. From the middle fat curve, MM-MD-RDH, SRI-MD-RDH, FSRCNN-
MD-RDH, and CGI-MD-RDH have the similar quality-E-capacity tradeoff. From the lowest fat curve,
BIC-MD-RDH, GF-MD-RDH, EGU-MD-RDH, MSG-Net-MD-RDH, and BC+MV+BIC-MD-RDH have
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Table 5: PSNR COMPARISON FOR DIFFERENT VALUES OF EMBEDDING
CAPACITY AMONG THE CONCERNED RDH COMBINATIONS.

Combination E-capacity (bpp)
0.1 0.3 0.5 0.7

BIC D-RDH 48.95 44.31 42.55 41.48
MD-RDH 48.86 44.44 42.87 42.67

GF D-RDH 48.99 44.31 42.59 41.55
MD-RDH 48.85 44.43 42.89 42.68

MM D-RDH 48.95 44.30 42.57 41.56
MD-RDH 49.76 45.33 43.55 42.73

EGU D-RDH 48.97 44.31 42.58 41.54
MD-RDH 48.87 44.44 42.88 42.65

SRI D-RDH 48.95 44.30 42.55 41.48
MD-RDH 49.62 45.23 43.46 42.68

FSRCNN D-RDH 48.84 44.11 42.39 41.38
MD-RDH 49.84 45.34 43.58 42.97

MSG-Net D-RDH 48.94 44.31 42.56 41.51
MD-RDH 48.88 44.49 42.92 42.74

CGI D-RDH 48.99 44.27 42.61 41.67
MD-RDH 49.56 45.10 43.45 42.73

BC+MV+BIC D-RDH 48.94 44.29 42.51 41.44
MD-RDH 48.77 44.35 42.79 42.60

JUR 55.60 50.77 48.56 47.04
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Figure 4: The PSNR vs. E-capacity tradeoff comparison among the considered
combinations.

the worst quality-E-capacity tradeoff. In summary, when setting the bpp values to 0.1, 0.1, 0.5, and
0.7, the PSNR improvement ratios of our JUR method are at least 11.6%, 12%, 11.4%, and 9.5%,
respectively, relative to the nine comparative combinations.

6 CONCLUSION

We have presented our fast method to partition all missing depth pixels into three disjoint regions,
and then have presented our fast and effective region-based depth map upsampling method. Based
on the test depth maps in Mobile3DTV, among our region-based upsampling method and the eight
comparative methods, the comprehensive experimental results have demonstrated the quality, execution-
time, visual effect, and non-deep learning supporting environment merits of our method. In addition,
for the comparison among our joint upsampling and location map-free RDH method, i.e. JUR, D-
RDH, and MD-RDH, the experimental results have justified the maximal embedding capacity and
the PSNR (for different embedding capacity values) merits of our JUR method. One future research
work is to combine the low-resolution depth guided joint trilateral upsampling [L. Yuan (2017)] and
our depth map upsampling method to handle upsampling and noise removal together.
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