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ABSTRACT. In this paper, the notion of a relative extension of continuous map-
pings is de�ned. The relative extension of continuous mappings is the generalization of
the notion of a relative retract in topological spaces. The relative extension of contin-
uous mappings will be applied to �xed point theory.

1 Introduction

In [9] we have introduced the notion of a relative retract in metric spaces and de�ned the
class of absolute relative retracts (ARR) and absolute neighborhood retract (ANRR).
The relative retracts are an essential generalization of the retracts in the sense of Borsuk.
In papers [9, 10, 11] their properties are studied with the use of new topological tools
(relative homotopy, relative contractability). Relative retracts applied to �xed point
theory, to the theory of coincidence (see [9, 10]) and to the study of global and local
properties of metrizable spaces (see [11]). In this paper we de�ne the relative extension
of continuous maps, that is, the generalization of the notion of relative retracts in
topological spaces (not necessarily metrizable). We also de�ne two classes of topological
spaces: relative extension (ESR) and relative neighborhood extension (NESR). These
spaces are an essential generalization of spaces considered by G. Fournier and A. Granas
in [4]. The relative extension of continuous maps is applied to the theorems on the �xed
points of multivalued compact and noncompact maps. This article is an integral part
of relative retracts theory (see [9, 10, 11]).
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2 Preliminaries

Throughout this paper, all spaces are assumed to be Hausdor� topological spaces and
all singlevalued mappings are continuous. A continuous map f : X → Y is called
perfect, if for every y ∈ Y , the set f−1(y) is nonempty and compact provided f is
closed. Let X and Y be two spaces and assume that for every x ∈ X a nonempty
subset ϕ(x) of Y is given. In this case, we say that ϕ : X ( Y is a multivalued
mapping. Let H∗ be the C̆ech homology functor with compact carriers, coe�cients
in the �eld of rational numbers Q from the category of Hausdor� topological spaces,
continuous maps to the category of a graded vector space and linear maps of degree
zero. Thus H∗(X) = {Hq(X)} is a graded vector space, Hq(X) being a q-dimensional
C̆ech homology group with compact carriers of X. For a continuous map f : X → Y ,
H∗(f) is the induced linear map f∗ = {fq}, where fq : Hq(X)→ Hq(Y ) ([5]). A set X
is acyclic if:

(i) X is nonempty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

Let u : E → E be an endomorphism of an arbitrary vector space. Suppose

N(u) = {x ∈ E : un(x) = 0 for some n},

where un is the n-th iterate of u and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have
the induced endomorphism ũ : Ẽ → Ẽ de�ned by ũ([x]) = [u(x)]. We call u admissible
provided dimẼ < ∞. Let u = {uq} : E → E be an endomorphism of degree zero of a
graded vector space E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial.

For such a u, we de�ne the (generalized) Lefschetz number Λ(u) of u by putting

Λ(u) =
∑
q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (comp. [5]). The following important property
of a Leray endomorphism is a consequence of a well-known formula tr(u ◦ v) = tr(v ◦u)
for the ordinary trace.

Proposition 2.1. ([5]) Assume that, in the category of graded vector spaces the fol-
lowing diagram commutes

E′ -u
E′′

6
u′′

E′′
Z

Z
Z

Z}
v

-E′

6
u′

u
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If one of u′, u′′ is a Leray endomorphism, then so is the other; and Λ(u′) = Λ(u′′).

An endomorphism u : E → E of a graded vector space E is called weakly nilpotent if
for every q ≥ 0 and for every x ∈ Eq , there exists an integer n such that unq (x) = 0.
For a weakly nilpotent endomorphism u : E → E, we have N(u) = E.

Proposition 2.2. If u : E → E is a weakly nilpotent endomorphism, then Λ(u) = 0.

A perfect map p : X → Y is called Vietoris provided for every y ∈ Y the set p−1(y) is
acyclic. We recall that the composition of two Vietoris mappings is a Vietoris mapping
and if p : X → Y is a Vietoris map then p∗ : H∗(X)→ H∗(Y ) is an isomorphism (see,
[5]). Let ϕ : X ( Y be a multivalued map. We recall that the map ϕ is admissible
(s-admissible) (see, [5]) if there exist a Vietoris map p : Z → X and a continuous map
q : Z → Y such that for each x ∈ X

q(p−1(x)) ⊂ ϕ(x) (q(p−1(x)) = ϕ(x)) (we will write (p, q) ⊂ ϕ ((p, q) = ϕ)).

Let ϕ : X ( Y be a map and let A ⊂ X be a nonempty set. We denote ϕA : A ( X
a map given by the formula ϕA(x) = ϕ(x) for each x ∈ A.

De�nition 2.3. A topological vector space is called Klee admissible provided for ev-
ery compact K ⊂ E and for every open neighborhood of zero V in E there exists a
continuous map πV : K → E such that:
(2.3.1) (x− πV (x)) ∈ V for every x ∈ K and
(2.3.2) there exists a natural number n = nK such that πV (K) ⊂ En, where En is an
n-dimensional subspace of E.

It is well known that any locally convex space is Klee admissible. We recall that a
multivalued map ϕ : X ( Y is compact, if the set ϕ(X) ⊂ Y is compact.

Theorem 2.4. ([5]) Let E be a Klee admissible space and let U ⊂ E be an open set.
Consider a diagram:

U
p←−−−− Z

q−−−−→ U,

p is Vietoris and q is compact. Then q∗◦p−1∗ is a Leray endomorphism and Λ(q∗◦p−1∗ ) 6= 0
implies that p and q have a coincidence point, that is, there is a point z ∈ Z such that
p(z) = q(z).

Theorem 2.5. ([6]) Let X be normal, A ⊂ X closed, and F0 : A→ E a compact map
into a normed space E. Then F0 is extendable to a compact map F : X → E.

Proposition 2.6. Let X be normal, A ⊂ X closed, and F0 : A → U a compact map
into an open set U ⊂ E, where E is a normed space. Then F0 is extendable to a
compact map F : V → U , where V ⊂ X is some open neighborhood of A.

Proof. Let F0 : A → U be a compact map, that is, F0(A) ⊂ U is a compact set,
where A ⊂ X is closed and U ⊂ E is an open set. There exists an open neighborhood
V1 ⊂ U of F0(A) such that V 1 ⊂ U . From Theorem 2.5 there exists a compact extension
F : X → E of F0 : A → U ⊂ E. Let V = F−1(V1). We de�ne a map F̃ : V → U by
the formula F̃ (x) = F (x) for each x ∈ V . We observe that the map F̃ is a compact
extension of F0 and the proof is complete.
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De�nition 2.7. (see, [4]) A space M is an extension (resp. neighborhood extension)
space provided for any compact pair (X,A) with A ⊂ X closed and any map f0 : A→M
there is an extension f : X →M (resp. neighborhood extension f : U →M) of f0 over
X (resp. over the neighborhood of A in X). The classes of the extension spaces and
the neighborhood extension spaces will be denoted by ES (written M ∈ ES) and NES
(written M ∈ NES) respectively.

Let X ∈ ANR and let Y ⊂ X be a compact and nonempty subset. We recall that Y
is movable in X provided every neighborhood U of Y admits a neighborhood V of Y ,
V ⊂ U , such that for every neighborhood W of Y , W ⊂ V , there exists a homotopy
H : V × [0, 1]→ U with

(1) H(x, 0) = x and H(x, 1) ∈W, for any x ∈ V.

Let y0 ∈ Y . We recall that Y has a trivial shape in X provided every neighborhood
U of Y admits a neighborhood V of Y , V ⊂ U , such that there exists a homotopy
H : V × [0, 1]→ U with

(2) H(x, 0) = x and H(x, 1) = y0, for any x ∈ V.

Let Y be a compact and metrizable space. We say that Y is movable provided there
exists a space X ∈ ANR and an embedding h : Y → X such that h(Y ) is movable in
X.

Remark 2.8. We recall that in the metrizable spaces the property of movable is an
absolute property, that is, if a compact set Y is movable in some ANR X and h : Y →
X ′ is an embedding into an ANR X ′, then h(Y ) is movable in X ′ (see, [1]).

Remark 2.9. ([1]) The following are types of movable spaces: AR, ANR, FAR and
FANR.

3 The families of sets

In this section, we will give the necessary notions through de�nitions and lemmas.

De�nition 3.1. (Trivial shape) Let T be a Tychono� cube, X ⊂ T be a compact
space and let x0 ∈ X be an arbitrary point. We will say that X has a trivial shape in
T provided every neighborhood U ⊂ T of X admits a neighborhood V of X, V ⊂ U ,
such that there exists a homotopy H : V × [0, 1]→ U with

H(x, 0) = x and H(x, 1) = x0, for any x ∈ V, (see (2)).

A compact space X has a trivial shape if there exists a Tychono� cube T and an
embedding h : X → T such that h(X) has a trivial shape in T.

Lemma 3.2. Let S be a nonempty set and let X =
∏
s∈S Xs. Assume that for each

s ∈ S there exists a Tychono� cube Ts such that Xs ⊂ Ts. The space X has a trivial
shape in T =

∏
s∈S Ts if and only if for each s ∈ S a space Xs has a trivial shape in Ts.
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Proof. Assume that X has a trivial shape in T. Let λ ∈ X, λ = {λs} and let a ∈ S. We
show that Xa has a trivial shape in Ta. Let Ua ⊂ Ta be a compact neighborhood of Xa.
The set U =

∏
s∈S Us, where Us = Ts for each s 6= a is a compact neighborhood of X in

T =
∏
s∈S Ts. There exists a compact neighborhood V =

∏
s∈S Vs ⊂ U of X, Vs = Ts

for each s /∈ {s1, s2, .., sn, a} such that there exists a homotopy Hλ : V × [0, 1]→ U with

Hλ(x, 0) = x and Hλ(x, 1) = λ, for any x ∈ V.

Suppose that
Va × [0, 1]

h−−−−→ V × [0, 1]
Hλ−−−−→ U

π−−−−→ Ua,

where h is a homeomorphism given by the formula h(va, t) = ({ys}, t), ya = va, ys = λs
for s 6= a and π is a projection, then we de�ne a homotopy Ha : Va× [0, 1]→ Ua by the
formula:

Ha = π ◦Hλ ◦ h.

Assume now that for each s ∈ S a space Xs has a trivial shape in Ts. Let λ ∈ X,
λ = {λs} be an arbitrary point and let U =

∏
s∈S Us ⊂ T be a compact neighborhood

of X in T such that for each s /∈ {s1, s2, ..., sn}, Us = Ts. It follows that, for each
k = 1, ..., n there exists a compact neighborhood Vsk ⊂ Usk of Xsk and a homotopy
Hsk : Vsk × [0, 1]→ Usk with

Hsk(x, 0) = x and Hsk(x, 1) = λsk , for any x ∈ Vsk .

Let V =
∏
s∈S Vs, Vs = Ts for any s /∈ {s1, s2, ..., sn}. We de�ne a homotopy Hλ :

V × [0, 1]→ U by the formula

Hλ({vs}, t) = {Hs(vs, t)}, for any v = {vs} ∈ V,

where
Hs : Vs × [0, 1] = Ts × [0, 1]→ Ts = Us

for each s /∈ {s1, s2, ..., sn} is a homotopy such that

Hs(vs, 0) = vs and Hs(vs, 1) = λs

for any vs ∈ Vs (for each s ∈ S the space Ts is contractible).

Lemma 3.3. Let S be a nonempty set and let, for each s ∈ S, Xs be a compact space.
Let X =

∏
s∈S Xs. The space X is acyclic if and only if for each s ∈ S, the space Xs

is acyclic.

Proof. Assume that X is acyclic. Let x ∈ X, x = {xs} be an arbitrary point and
s0 ∈ S. We want to show that the space Xs0 is acyclic. Consider the map

Xs0
h−−−−→ X

πs0−−−−→ Xs0 ,

where h(zs0) = {ys}, ys = xs for each s 6= s0, ys0 = zs0 and πs0 is a projection. We
observe that

πs0 ◦ h = IdXs0 .
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Hence, the map
h∗ : H∗(Xs0)→ H∗(X)

is a monomorphism, so Xs0 is an acyclic space. Assume now that, for each s ∈ S the
space Xs is acyclic. From the mathematical literature (see, [5]) we know that if the
spaces X1, ..., Xn are acyclic, then the space X1 × ...×Xn is acyclic. Let Σ = {ξ ⊂ S :
ξ is a �nite set}, then (Σ,≤) is a directed set, where ≤ is an inclusion. Given that

X = lim
←
{Yξ, πξζ ,Σ},

where Yξ = Xs1×Xs2×...×Xsn , ξ = {s1, s2, ..., sn} ⊂ S and for each ζ ≤ ξ, πξζ : Yξ → Yζ

is a projection. It follows from the continuity of the �Cech homology that the space X
is acyclic.

Lemma 3.4. Let Q be a Hilbert cube. Let S be a nonempty set and let X =
∏
s∈S Xs.

Assume that, for each s ∈ S, Xs is a compact subset of Qs = Q. The space X has a
trivial shape in T =

∏
s∈S Qs if and only if for each s ∈ S a space Xs has a trivial shape

in Qs.

Proposition 3.5. If X ⊂ T has a trivial shape in T, then X is acyclic.

Proof. Let
Σ = {K : K is a compact neighborhood of X in T}

a directed set from the inclusion ≤, that is, (ξ ≤ ζ)⇔ (Kζ ⊂ Kξ) for each ξ, ζ ∈ Σ and
let

X = {Kζ , j
ζ
ξ , Σ}

be an inverse system, where for ξ ≤ ζ, jζξ : Kζ → Kξ is an inclusion. Then the inclusion
iξ : X → Kξ is homotopic to a constant map Cξ : X → Kξ, Cξ(x) = x0 for each x ∈ X,
ξ ∈ Σ and an arbitrary x0 ∈ X. Since �ech homology is continuous, we obtain

(lim
←
iξ)∗ = (lim

←
Cξ)∗,

where
(lim
←
iξ)∗ : H∗(X)→ H∗(lim←

X)

is an isomorphism, so X is acyclic.

De�nition 3.6. (Cell-like) Let X be a space. A perfect map α : Z → X is cell-like
if for each compact set K ⊂ X there exist a Tychono� cube T and an embedding
h : α−1(K)→ T such that for each x ∈ K the set h(α−1(x)) has a trivial shape in T.

Let ∆ be family sets of compact and nonempty spaces such that the following conditions
are satis�ed:

(3) if A is a single-element space, then A ∈ ∆.

(4) If, for each s ∈ S, As ∈ ∆ then

(∏
s∈S

As

)
∈ ∆,
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where S is any, nonempty set. For each A ∈ ∆ there exists a Tychono� cube T and an
embedding h : A→ T such that

(5) h(A) ∈ ∆.

If A ∈ ∆ is a metrizable space then there exists an embedding h : A→ Q such that

(6) h(A) ∈ ∆

where Q is a Hilbert cube. Let X be a space. We will say that a perfect map α : Z → X
is a ∆ map if for each compact set K ⊂ X there exist a Tychono� cube T and an
embedding h : α−1(K) → T such that for each x ∈ K the set h(α−1(x)) ∈ ∆. We
observe that if α ∈ D(X), then for each nonempty set B ⊂ X (not necessarily compact)
αα−1(B) ∈ D(B), where αα−1(B) is a restriction of α to the set α−1(B). Denote

(7) D(X) = {α : Z → X; α is a ∆ map}.

The following are examples of D type sets:

(8) HOM(X) = {α : Z → X; α is a homeomorphism},

(9) CELL(X) = {α : Z → X; α is a cell-like map},

(10) V(X) = {α : Z → X; α is a Vietoris map}.

We observe that

(11) HOM(X) ⊂ CELL(X) ⊂ V(X).

4 Relative extensions of maps

In this section we will de�ne the notion of relative extension of maps and prove some
of its properties.

De�nition 4.1. ( see, De�nition 2.7) We say that a space X is a relative extension
(relative neighborhood extension) (we write X ∈ ESR(D), (X ∈ NESR(D))) if for
each compact set K ⊂ X there exists a space ZK , αK : ZK → K, αK ∈ D(K) such
that for each compact space Y , for each closed set A ⊂ Y and for each continuous map
f : A → ZK the map αK ◦ f has a continuous extension F : Y → X (F : U → X),
where U ⊂ Y is some open set such that A ⊂ U , that is the following diagram:

ZK
j◦αK−−−−→ Xxf xF

A
i−−−−→ T,

is commutative, where T = Y (T = U), i : A ↪→ T and j : K ↪→ X are inclusions.
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Proposition 4.2. A space X ∈ NESR(HOM)(ESR(HOM)) if and only if X ∈
NES(ES).

Proof. Let X ∈ NESR(HOM) and let f : A→ X be a continuous map, where A ⊂ Y
is a closed subset of a compact space Y . We denote by K = f(A). There exists a map
αK : ZK → K, αK ∈ HOM(K) such that the conditions of De�nition 4.1 are satis�ed.
Given that

A
f̃−−−−→ K

α−1
K−−−−→ ZK

αK−−−−→ K
i−−−−→ X,

where f̃(y) = f(y) for each y ∈ A, α−1K is an inverse homeomorphism and i is an
inclusion. There exists an extension G : U → X of αK ◦ (α−1K ◦ f̃) = f̃ , where U ⊂ Y is
some open neighborhood of A. The proof in the opposite direction is obvious and the
proof of the second part of this Proposition is analogical.

Remark 4.3. ( see, [9]) Let X,Y be metrizable spaces. We recall that a space X is
a D-retract of Y , if there exist a metrizable space Z ⊂ Y , α : Z → X, α ∈ D(X) and
r : Y → X such that r ◦ i = α, where i : Z ↪→ Y is an inclusion. We will say that
the map r is a D-retraction and a space Z is a D-carrier of X in Y . We will write
X ∈ ANRR(D) (X ∈ ARR(D)) if there exists a normed space E, an open set V ⊂ E
such that X is a D-retract of V (E).

We observe that if α : X → Y is a perfect (proper) map such that, for each y ∈ Y , the
set α−1(y) has a trivial shape then α ∈ CELL(Y ) (see (6) and Lemma 3.4).

Proposition 4.4. Let X be a metrizable space. If X ∈ ANRR(D)(ARR(D)) then
X ∈ NESR(D)(ESR(D)).

Proof. Let X be a metrizable space and let X ∈ ANRR(D). Then, there exists a
normed space E, an open set V ⊂ E such that X is a D-retract of V ; that is, there
exist a space Z ⊂ V , α : Z → X, α ∈ D(X) and r : V → X such that r ◦ i = α,
where i : Z ↪→ V is an inclusion. Let K ⊂ X be a compact set, ZK = α−1(K) and
αK : ZK → K, αK(z) = α(z) for each z ∈ ZK , where αK ∈ D(K). Let us take a
compact space Y , a closed set A ⊂ Y and a continuous map f : A → ZK . Then, we
have

A
f−−−−→ ZK

j−−−−→ Z
i−−−−→ V

r−−−−→ X,

where j is an inclusion. There exists an extension G : U → V of i ◦ j ◦ f (see, Remark
2.6), where U ⊂ Y is some open neighborhood of A. We de�ne an extension F : U → X
of αK ◦ f by the formula

F = r ◦G.

The proof of the second part of this Proposition is analogical.

Proposition 4.5. A space (X1 × X2) ∈ NESR(D)(ESR(D)) if and only if X1 ∈
NESR(D)(ESR(D)) and X2 ∈ NESR(D)(ESR(D)).

Proof. Let (X1 ×X2) ∈ NESR(D) and let K ⊂ X1(K ⊂ X2) be a compact set. Then
a set K×{x2} ⊂ X1×X2 ({x1}×K ⊂ X1×X2) is compact, where (x1, x2) ∈ X1×X2

is an arbitrary point. From the assumption there exists a map αK : ZK → K × {x2}

8

Samsung
Podświetlony

Samsung
Podświetlony

Samsung
Podświetlony

Samsung
Podświetlony

Samsung
Podświetlony

Samsung
Podświetlony

Samsung
Podświetlony

Samsung
Podświetlony



(αK : ZK → {x1}×K), αK ∈ D(K×{x2}) (αK ∈ D({x1}×K)) such that the conditions
of De�nition 4.1 are satis�ed. Let T be a compact space and let f : A → ZK be a
continuous map, whereA ⊂ T is a closed set. There exists an extensionG : U → X1×X2

of αK ◦ f , where U ⊂ T is an open neighborhood of A. We de�ne a map F : U → X1

(F : U → X2) by the formula

F = π1 ◦G (F = π2 ◦G),

where πi : X1 × X2 → Xi are projections, i = 1, 2. Now, let X1 ∈ NESR(D) and
X2 ∈ NESR(D) and let K ⊂ X1 ×X2 be a compact set. We denote by Ki = πi(K),
where πi : X1×X2 → Xi are projections, i = 1, 2. There exists a map αKi : ZKi → Ki,
αKi ∈ D(Ki), i = 1, 2 such that the conditions of De�nition 4.1 are satis�ed. It's
obvious that K ⊂ K1 ×K2. Let α = αK1 × αK2 , ZK = α−1(K) and αK : ZK → K,
αK(z) = α(z) for each z ∈ ZK . Let T be a compact space and let f : A → ZK be a
continuous map, where A ⊂ T is a closed set. For i = 1, 2 we have

A
f−−−−→ ZK

j−−−−→ ZK1 × ZK2

π′i−−−−→ ZKi
αKi−−−−→ Ki

ji−−−−→ Xi,

where j, ji are inclusions and π′i : ZK1 × ZK2 → ZKi are projections, i = 1, 2. There
exist extensions Gi : Vi → Xi of αKi ◦(π′i◦j◦f), where Vi ⊂ T some open neighborhoods
of A, i = 1, 2. Let U = V1 ∩ V2. We de�ne an extension F : U → X1 ×X2 of αK ◦ f by
the formula

F (t) = (G1(t), G2(t)) for each t ∈ U.

The proof of the second part of this Proposition is analogical.

Proposition 4.6. Let S be a nonempty set and let X =
∏
s∈S Xs. If X ∈ NESR(D)

then Xs ∈ NESR(D) for each s ∈ S.

Proof. Assume that X ∈ NESR(D). Let s0 ∈ S, K ⊂ Xs0 be a compact set and let
{xs} ∈ X be an arbitrary point. Denote

P =
∏
s∈S

Ys,

where for each s 6= s0, Ys = {xs} and Ys0 = K. There exists a map αP ∈ D(K),
αP : ZP → P such that the conditions of De�nition 4.1 are satis�ed. Let ZK = ZP and
let αK = h ◦ αP , where h : P → K is a homeomorphism (restriction of a projection
πs0 : X → Xs0). Let f : A → ZK be a continuous map, where A is a closed subset of
a compact space Y . There exists an extension G : U → X of αK ◦ f , where U ⊂ Y
is an open neighborhood of A. We de�ne an extension F : U → Xs0 of αK ◦ f by the
formula F = πs0 ◦G and the proof is complete.

Proposition 4.7. Let S be a nonempty set and let X =
∏
s∈S Xs. A space X ∈

ESR(D) if and only if Xs ∈ ESR(D) for each s ∈ S.

Proof. Assume that X ∈ ESR(D). It follows from Proposition 4.6 that Xs ∈ ESR(D)
for each s ∈ S. Let for each s ∈ S the space Xs ∈ ESR(D) and let K ⊂ X be a
compact set. We denote by Ks = πs(K), where πs : X → Xs is a projection for each
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s ∈ S. For each s ∈ S, we take a map αKs ∈ D(Ks), αKs : ZKs → Ks such that
the conditions of De�nition 4.1 are satis�ed. It is obvious that K ⊂

∏
s∈SKs. Let

α =
∏
s∈S αKs :

∏
s∈S ZKs →

∏
s∈SKs, ZK = α−1(K) and let αK : ZK → K be a

restriction of α. It is clear that αK ∈ D(K). Let f : A → ZK be a map, where A is
a closed subset of a compact space Y and let π1s : ZK → ZKs be a projection for each
s ∈ S. Then, we have

A
f−−−−→ ZK

π1
s−−−−→ ZKs

αKs−−−−→ Ks
is−−−−→ Xs,

where is is an inclusion, for each s ∈ S. It follows that for each s ∈ S, there exists an
extension Fs : Y → Xs of αKs ◦ (π1s ◦ f). We de�ne an extension F : Y → X of αK ◦ f
by the formula:

F (y) = {Fs(y)} for each y ∈ Y

and the proof is complete.

Example 4.8. Let X be a metrizable and non-movable space, Q be a Hilbert cube
and p : Q → X be a cell-like map (see, [7]). Let S be a nonempty set (card(S) > ℵ0)
and let Y =

∏
s∈S Ys, where Ys = X for each s ∈ S. We de�ne a cell-like map

α : T → Y by the formula α = {ps}s∈S , where T =
∏
s∈S Qs is a Tychono� cube and

for each s ∈ S, Qs = Q and ps = p. It is clear that Y ∈ ESR(CELL) (in particular,
Y ∈ NESR(CELL)) is a non-metrizable space. We show that Y /∈ NES. Assume
that Y ∈ NES. Then, from Proposition 4.6, X ∈ NES. Hence X is a neighborhood
retract of Q, so X ∈ ANR, but it is a contradiction, since X is a non-movable space
(see Remark 2.9).

5 The abstract morphism

The symbol D(X,Y ) will denote the set of all mappings of the form

X
p←−−−− Z

q−−−−→ Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous map.
Each such diagram will be denoted by (p, q). Let (p1, q1) ∈ D(X,Y ) and (p2, q2) ∈
D(Y, T ). The composition of diagrams (see, [5])

X
p1←−−−− Z1

q1−−−−→ Y
p2←−−−− Z2

q2−−−−→ T ,

is called a diagram (p, q) ∈ D(X,T )

X
p←−−−− Z1 4q1p2 Z2

q−−−−→ T,

where Z1 4q1p2 Z2 = {(z1, z2) ∈ Z1 × Z2 : q1(z1) = p2(z2)},

p = p1 ◦ π1, q = q2 ◦ π2,

Z1
π1←−−−− Z1 4q1p2 Z2

π2−−−−→ Z2,

π1(z1, z2) = z1 (Vietoris map), π2(z1, z2) = z2 for each (z1, z2) ∈ Z.
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It shall be written
(p, q) = (p2, q2) ◦ (p1, q1).

From ([5], p. 201, 202) it also results that the composition of the diagrams satis�es the
condition:

(12) for each x ∈ X q(p−1(x)) = q2(p
−1
2 (q1(p

−1
1 (x)))).

Let (p1, q1), (p2, q2) ∈ D(X,Y ). Assume that, in the setD(X,Y ) we have an equivalency
relation (it is denoted as ∼a) such that the following conditions are satis�ed (see [14,
13, 8]):

(13) ((p1, q1) ∼a (p2, q2))⇒ (for each x ∈ X q1(p
−1
1 (x)) = q2(p

−1
2 (x))),

(14) ((p1, q1) ∼a (p2, q2))⇒ (q1∗ ◦ p−11∗ = q2∗ ◦ p−12∗ ),

Let (p3, q3), (p4, q4) ∈ D(Y, T ).
(15)
((p1, q1) ∼a (p2, q2) and (p3, q3) ∼a (p4, q4))⇒ (((p3, q3)◦(p1, q1)) ∼a ((p4, q4)◦(p2, q2))).

The setMa(X,Y ) = D(X,Y )/∼a will be called a set of abstract morphisms (a-morphism).
Let (p, q) ∈ D(X,Y ). For any ϕa ∈ Ma(X,Y ) the set ϕ(x) = q(p−1(x)) where
ϕa = [(p, q)]a is called an image of the point x in the a-morphism ϕa. We denote
by ϕ : X →a Y a multivalued map determined by ϕa ∈ Ma(X,Y ). We observe from
(12) and (15) that if ϕ : X →a Y is determined by ϕa = [(p1, q1)]a and ψ : Y →a T is
determined by ψa = [(p2, q2)]a then ψ ◦ ϕ : X →a T is determined by

(ψ ◦ ϕ)a = [((p2, q2) ◦ (p1, q1))]a.

We recall that a multivalued map ϕ : X ( Y is acyclic if for each x ∈ X the set ϕ(x)
is compact and acyclic. An acyclic map ϕ : X →a Y is determined by ϕa = [(pϕ, qϕ)]a,
where

X
pϕ←−−−− Γϕ

qϕ−−−−→ Y

are maps given by formulas: pϕ(x, y) = x, qϕ(x, y) = y for each (x, y) ∈ Γϕ and Γϕ is a
graph of ϕ.

Remark 5.1. Let ϕ : X →a X be a map. We observe that a map ϕ has a �xed point
i.e., there exists a point x ∈ X such that x ∈ ϕ(x) if and only if for some (p, q) ∈ ϕa, p
and q have a coincidence point.

Let TOP denote categories in which Hausdor� topological spaces are objects and con-
tinuous mappings are category mappings. Let TOPa denote categories in which Haus-
dor� topological spaces are objects and multivalued maps determined by abstract mor-
phisms are category mappings. Let VECTG denote categories in which linear graded
vector spaces are objects and linear mappings of degree zero are category mappings.
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Theorem 5.2. (see [14]) The mapping H̃∗ : TOPa → VECTG given by the formula

H̃∗(ϕ) ≡ ϕ∗ = q∗ ◦ p−1∗ ,

where ϕ is a multivalued map determined by ϕa = [(p, q)]a is a covariant functor and
the extension of the functor of the �Cech homology H∗ : TOP→ VECTG.

Let ϕ : X →a X be a map determined by ϕa = [(p, q)]a, where (p, q) ∈ D(X,X).
Assume that ϕ∗ = q∗ ◦ p−1∗ is a Leray endomorphism (see (14)). Then, we de�ne a
Lefschetz number of ϕ∗ by the formula

Λ(ϕ∗) = Λ(q∗ ◦ p−1∗ ).

We recall that ϕ : X →a X is a Lefschetz map if ϕ∗ is a Leray endomorphism and
Λ(ϕ∗) 6= 0 implies that the map ϕ has a �xed point.

Remark 5.3. A map ϕ : X ( Y is admissible if and only if there exists a map
∆ : X →a Y such that ∆ ⊂ ϕ, that is, for each x ∈ X, ∆(x) ⊂ ϕ(x).

6 The �xed points of compact maps

In this section we will show that the spaces of NESR(V) type has the �xed point
property.

Theorem 6.1. Let X ∈ NESR(V) and let ϕ : X →a X be a compact map. Then ϕ
is a Lefschetz map.

Proof. For K = ϕ(X) there exists a map αK : ZK → K, αK ∈ V(K) such that the
conditions of De�nition 4.1 are satis�ed. Let h : ZK → T be an embedding and let
S = h(ZK) ⊂ T, where T is some Tychono� cube. We have the following diagrams:

S
h−1

−−−−→ ZK
αK−−−−→ K

i1−−−−→ X,

X
ϕ̃−−−−→ K

←−αK−−−−→ ZK
h−−−−→ S,

where i1 is an inclusion, h−1 is an inverse homeomorphism, ϕ̃(x) = ϕ(x) for each x ∈ X
and ←−αK(x) = α−1K (x) for each x ∈ K. From the assumption there exists an extension
F : U → X of αK ◦ h−1, where U ⊂ T is some open set such that S ⊂ U . We get the
following commutative diagram:

X -ψ
U
6
ψ ◦ F

U ,
Z

Z
Z

Z}
F

-X

6
ϕ

ψ

where ψ = i2 ◦h◦←−αK ◦ ϕ̃ and i2 : S ↪→ U is an inclusion . There exists a locally convex
space L(T) such that T is a retract of L(T) (see, [4]). Let r : L(T)→ T be a retraction
and let r̃ : r−1(U) → U be a map given by r̃(x) = r(x) for each x ∈ r−1(U). We have
the following commutative diagram:
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U -j
r−1(U)
6
j ◦ η

r−1(U),
Z

Z
Z

Z}
η

-U

6
ψ ◦ F

j

where j is an inclusion and η = ψ ◦ F ◦ r̃. From Proposition 2.1 and Theorem 2.4 a
Lefschetz number Λ(ϕ∗) is well de�ned and Λ(ϕ∗) = Λ((j ◦ η)∗). Assume now, that
Λ(ϕ∗) 6= 0 then from Theorem 2.4 the map j ◦ η has a �xed point (see, Remark 5.1).
Hence, the map ψ ◦F has a �xed point. Let x ∈ U be a �xed point of ψ ◦F . It follows
that

F (x) ∈ F (h(←−αK(ϕ̃(F (x))))) = ϕ̃(F (x)) = ϕ(F (x)).

Thus, ϕ is a Lefschetz map.

7 The �xed points of noncompact maps

Let ϕn ≡ ϕ ◦ ϕ ◦ ... ◦ ϕ, (nth iterate of ϕ), where n ∈ N.

De�nition 7.1. A map ϕ : X →a X is called a compact absorbing contraction (written
ϕ ∈ CAC(X)) provided there is an open set U ⊂ X such that:
(7.1.1) ϕ(U) ⊂ U and the map ϕU : U →a U , ϕU (x) = ϕ(x) for every x ∈ X is
compact,
(7.1.2) for every x ∈ X there exists n = nx such that ϕn(x) ⊂ U .

Lemma 7.2. (see [5]) Let ϕ ∈ CAC(X) and U be an open subset X as in De�nition
7.1. If K is a compact subset of X, then there exists n ∈ N such that ϕn(K) ⊂ U .

Let ϕ : X ( Y be a map and let A ⊂ X and B ⊂ Y be nonempty sets. Assume that
ϕ(A) ⊂ B. We denote by ϕ̂ : (X,A) ( (Y,B) a map of pairs, that is, ϕ̂(x) = ϕ(x) for
each x ∈ X.

Lemma 7.3. (see [5]) Let ϕ̂ : (X,A) →a (X,A) be a map of pairs. If any two of
endomorphisms ϕ̂∗ : H(X,A) → H(X,A), ϕ∗ : H(X) → H(X), ϕA∗ : H(A) → H(A)
are Leray endomorphisms, then so is the third and

Λ(ϕ̂∗) = Λ(ϕ∗)− Λ(ϕA∗).

Lemma 7.4. Let X ∈ NESR(D). If U ⊂ X is an open set then U ∈ NESR(D).

Proof. Let U ⊂ X be an open set and let K ⊂ U be a compact set. There exists
αK : ZK → K, αK ∈ D(K) such that the conditions of De�nition 4.1 are satis�ed.
Let Y be a compact space and let f : A → ZK be a continuous map, where A ⊂ Y is
a closed set. From the assumption there exists an extension F1 : V1 → X of αK ◦ f ,
where V1 ⊂ Y is some open neighborhood of A. The set V = F−11 (U) ⊂ Y is an open
neighborhood of A. We de�ne an extension F : V → U of αK ◦ f given by the formula

F (x) = F1(x) for each x ∈ V.
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Let ϕ : X →a X be a map. Denote

Fix(ϕ) = {x ∈ X : x ∈ ϕ(x)}.

Theorem 7.5. Let X be a space and let ϕ ∈ CAC(X). Assume further that there
exists a space A ⊂ X such that A ∈ NESR(V) and ϕ(U) ⊂ A, where U is chosen
according to De�nition 7.1, then ϕ is a Lefschetz map.

Proof. Let ψ : U →a U ∩ A be a map given by ψ(x) = ϕ(x) for all x ∈ U . By the
assumption, a map ψ is well-de�ned. We observe that (U ∩ A) ∈ NESR(V) (see,
Lemma 7.4). A homomorphism ϕ̂∗ : H(X,U) → H(X,U) is weakly nilpotent (see,
[12]). Hence, from Proposition 2.2 we get Λ(ϕ̂∗) = 0. We have a following commutative
diagram:

H(U ∩A) -i∗ H(U)
6ϕU∗

H(U),
Z

Z
Z

Z}
ψ∗

-H(U ∩A)

6ϕA∩U∗

i∗

where i : U ∩ A ↪→ U is an inclusion. From the above diagram and Proposition 2.1, it
results that ϕU∗ is a Leray endomorphism and Λ(ϕU∗) = Λ(ϕA∩U∗) (see, Theorem 6.1).
Hence, from Lemma 7.3, we get that ϕ∗ is a Leray endomorphism and Λ(ϕ∗) = Λ(ϕU∗).
Assume that Λ(ϕ∗) 6= 0. Then Λ(ϕA∩U∗) 6= 0 and ϕA∩U has a �xed point (see, Theorem
6.1). It is clear that Fix(ϕA∩U ) ⊂ Fix(ϕ), so ϕ is a Lefschetz map.

8 Conclusion

In section 3 the notions of a trivial shape in topological spaces are given. In section 4 the
notions of ES and NES are generalized. Example 4.8 shows that the class of spaces of
NESR(CELL) (ESR(CELL)) type is essentially wider than the class of spaces of NES
(ES) type. We prove that in the class of metrizable spaces ANRR(D) ⊂ NESR(D)
(ARR(D) ⊂ ESR(D)). In sections 6 and 7, we prove that the spaces of NESR(V) type
(in particular NESR(CELL)) have the �xed point property. It is worth mentioning
that this article is strongly related to [10, 9, 11].
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