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ABSTRACT. In this paper, the notion of a relative extension of continuous map-
pings is defined. The relative extension of continuous mappings is the generalization of
the notion of a relative retract in topological spaces. The relative extension of contin-
uous mappings will be applied to fixed point theory.

1 Introduction

In [9] we have introduced the notion of a relative retract in metric spaces and defined the
class of absolute relative retracts (ARR) and absolute neighborhood retract (ANRR).
The relative retracts are an essential generalization of the retracts in the sense of Borsuk.
In papers [9, 10, 11] their properties are studied with the use of new topological tools
(relative homotopy, relative contractability). Relative retracts applied to fixed point
theory, to the theory of coincidence (see [9, 10]) and to the study of global and local
properties of metrizable spaces (see [11]). In this paper we define the relative extension
of continuous maps, that is, the generalization of the notion of relative retracts in
topological spaces (not necessarily metrizable). We also define two classes of topological
spaces: relative extension (FSR) and relative neighborhood extension (NESR). These
spaces are an essential generalization of spaces considered by G. Fournier and A. Granas
in [4]. The relative extension of continuous maps is applied to the theorems on the fixed
points of multivalued compact and noncompact maps. This article is an integral part
of relative retracts theory (see |9, 10, 11]).
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2 Preliminaries

Throughout this paper, all spaces are assumed to be Hausdorff topological spaces and
all singlevalued mappings are continuous. A continuous map f : X — Y is called
perfect, if for every y € Y, the set f~!(y) is nonempty and compact provided f is
closed. Let X and Y be two spaces and assume that for every x € X a nonempty
subset p(z) of Y is given. In this case, we say that ¢ : X — Y is a multivalued
mapping. Let H, be the Cech homology functor with compact carriers, coefficients
in the field of rational numbers Q from the category of Hausdorff topological spaces,
continuous maps to the category of a graded vector space and linear maps of degree
zero. Thus H,(X) = {Hy(X)} is a graded vector space, Hy(X) being a ¢-dimensional
Cech homology group with compact carriers of X. For a continuous map f: X — Y,
H.,(f) is the induced linear map f, = {f;}, where f; : Hy(X) — Hy(Y) ([5]). A set X
is acyclic if:

(i) X is nonempty,
(ii) Hy(X) =0 for every ¢ > 1 and
(i) Ho(X) ~ Q.
Let w: E — E be an endomorphism of an arbitrary vector space. Suppose
N(u) ={x € E:u"(x) =0 for some n},

where u” is the n-th iterate of v and E = E/N(u). Since u(N(u)) C N(u), we have
the induced endomorphism w : E — E defined by ([z]) = [u(x)]. We call u admissible
provided dimE < oco. Let u = {uq} : E — E be an endomorphism of degree zero of a
graded vector space £ = {E,;}. We call u a Leray endomorphism if

(i) all u4 are admissible,

(ii) almost all E/q are trivial.
For such a u, we define the (generalized) Lefschetz number A(u) of u by putting
A(w) =Y (=1)7tr(dy),
q

where tr(ug) is the ordinary trace of ug (comp. [5]). The following important property
of a Leray endomorphism is a consequence of a well-known formula ¢r(uov) = tr(vou)
for the ordinary trace.

Proposition 2.1. (/5/) Assume that, in the category of graded vector spaces the fol-
lowing diagram commutes

El E/l
u/‘ \ W ’LL//
E/ u E/l
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If one of u/, u” is a Leray endomorphism, then so is the other; and A(u') = A(u”).

An endomorphism u : £ — FE of a graded vector space FE is called weakly nilpotent if
for every ¢ > 0 and for every x € E, , there exists an integer n such that uf;(x) = 0.
For a weakly nilpotent endomorphism u : E — E| we have N(u) = E.

Proposition 2.2. If u : E — FE is a weakly nilpotent endomorphism, then A(u) = 0.

A perfect map p: X — Y is called Vietoris provided for every y € Y the set p~!(y) is
acyclic. We recall that the composition of two Vietoris mappings is a Vietoris mapping
and if p: X — Y is a Vietoris map then p, : H.(X) — H(Y) is an isomorphism (see,
[5]). Let ¢ : X — Y be a multivalued map. We recall that the map ¢ is admissible
(s-admissible) (see, |5]) if there exist a Vietoris map p : Z — X and a continuous map
q: Z — Y such that for each x € X

q(p~'(2)) C o(x) (qp~'(z)) = @(x)) (we will write (p,q) C ¢ ((p,q) = ).

Let ¢ : X —o Y be a map and let A C X be a nonempty set. We denote p4: A — X
a map given by the formula p4(z) = ¢(z) for each z € A.

Definition 2.3. A topological vector space is called Klee admissible provided for ev-
ery compact K C E and for every open neighborhood of zero V in E there exists a
continuous map 7wy : K — F such that:

(2.3.1) (z —7y(x)) €V for everyx € K and

(2.3.2) there exists a natural number n = ng such that 7y (K) C E", where E" is an
n-dimensional subspace of F.

It is well known that any locally convex space is Klee admissible. We recall that a

multivalued map ¢ : X — Y is compact, if the set ¢(X) C Y is compact.

Theorem 2.4. ([/5]) Let E be a Klee admissible space and let U C E be an open set.
Consider a diagram:

U+t z -1,y
p is Vietoris and ¢ is compact. Then g,op; ! is a Leray endomorphism and A(g.op; ') # 0
implies that p and ¢ have a coincidence point, that is, there is a point z € Z such that

p(2) = q(2)-

Theorem 2.5. ([6]) Let X be normal, A C X closed, and Fy : A — E a compact map
into a normed space E. Then Fj is extendable to a compact map F': X — FE.

Proposition 2.6. Let X be normal, A C X closed, and Fy : A — U a compact map
into an open set U C FE, where F is a normed space. Then Fj is extendable to a
compact map F : V — U, where V C X is some open neighborhood of A.

Proof. Let Fy : A — U be a compact map, that is, Fyp(A) C U is a compact set,
where A C X is closed and U C F is an open set. There exists an open neighborhood
Vi C U of Fy(A) such that V; C U. From Theorem 2.5 there exists a compact extension
F:X sEofFy:A—UCE. Let V= F1(V}). We define amap F : V — U by
the formula F(z) = F(z) for each z € V. We observe that the map F is a compact
extension of Iy and the proof is complete. O
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Definition 2.7. (see, [4]) A space M is an extension (resp. neighborhood extension)
space provided for any compact pair (X, A) with A C X closed and any map fy: A - M
there is an extension f: X — M (resp. neighborhood extension f : U — M) of fy over
X (resp. over the neighborhood of A in X). The classes of the extension spaces and
the neighborhood extension spaces will be denoted by ES (written M € ES) and NES
(written Ml € N ES) respectively.

Let X € ANR and let Y C X be a compact and nonempty subset. We recall that Y
is movable in X provided every neighborhood U of Y admits a neighborhood V of Y,
V C U, such that for every neighborhood W of Y, W C V, there exists a homotopy
H:V x[0,1] — U with

(1) H(z,0) =z and H(x,1) € W, for any z € V.

Let yo € Y. We recall that Y has a trivial shape in X provided every neighborhood
U of Y admits a neighborhood V of Y, V' C U, such that there exists a homotopy
H:V x[0,1] = U with

(2) H(z,0) =2 and H(x,1) =y, for any z € V.

Let Y be a compact and metrizable space. We say that Y is movable provided there
exists a space X € ANR and an embedding h : Y — X such that h(Y") is movable in
X.

Remark 2.8. We recall that in the metrizable spaces the property of movable is an
absolute property, that is, if a compact set Y is movable in some ANR X and h: Y —
X' is an embedding into an ANR X', then h(Y') is movable in X’ (see, [1]).

Remark 2.9. ([1]) The following are types of movable spaces: AR, ANR, FAR and
FANR.

3 The families of sets

In this section, we will give the necessary notions through definitions and lemmas.

Definition 3.1. (Trivial shape) Let T be a Tychonoff cube, X C T be a compact
space and let g € X be an arbitrary point. We will say that X has a trivial shape in
T provided every neighborhood U C T of X admits a neighborhood V of X, V C U,
such that there exists a homotopy H: V x [0,1] — U with

H(z,0) =2z and H(xz,1) =9, forany z €V, (see (2)).

A compact space X has a trivial shape if there exists a Tychonoff cube T and an
embedding h : X — T such that hA(X) has a trivial shape in T.

Lemma 3.2. Let S be a nonempty set and let X = [[, ¢ X,. Assume that for each
s € S there exists a Tychonoff cube Ty such that Xy C Ts. The space X has a trivial
shape in T =[], g T if and only if for each s € S a space X, has a trivial shape in Ts.

4
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Proof. Assume that X has a trivial shapein T. Let A € X, A ={As;} and let a € S. We
show that X, has a trivial shape in T,. Let U, C T, be a compact neighborhood of X,.
The set U = Hses Us, where Ug = T, for each s # a is a compact neighborhood of X in
T = [[;cg Ts. There exists a compact neighborhood V' =[] ,.q Vs C U of X, Vi, =T,
for each s ¢ {s1, s2, .., Sp,a} such that there exists a homotopy Hy: V x[0,1] — U with

H)(z,0) =z and Hy(z,1) =\, for any =z € V.

Suppose that
H)

Vo x [0,1] — V' x [0,1] U —"- U,
where h is a homeomorphism given by the formula h(vg,t) = ({ys},t), Yo = Va, Ys = As
for s # a and 7 is a projection, then we define a homotopy H, : V,, x [0,1] — U, by the
formula:

H,=moH)yoh.

Assume now that for each s € S a space X has a trivial shape in T;. Let A € X,
A = {)s} be an arbitrary point and let U = [[,c4Us C T be a compact neighborhood
of X in T such that for each s ¢ {s1,s2,...,8,}, Us = Ts. It follows that, for each
k = 1,...,n there exists a compact neighborhood V,;, C U, of X,, and a homotopy
Hg, : Vs, x[0,1] = Us, with

Hg, (2,0) =2 and Hg, (x,1) = A, forany x € Vj,.

Let V = [[,cq Vs, Vs = T, for any s ¢ {s1,52,...,5,}. We define a homotopy H) :
V x [0,1] — U by the formula

H)({vs}, t) = {Hs(vs, )}, for any v ={vs} €V,
where
H:Vyx[0,1] =Ts x [0,1] = Ty = U,

for each s ¢ {s1, s9,...,8,} is a homotopy such that
Hy(vs,0) =vs and Hg(vs,1) = Ag
for any v € V; (for each s € S the space T is contractible). a

Lemma 3.3. Let S be a nonempty set and let, for each s € S, X5 be a compact space.
Let X = [[,cgXs. The space X is acyclic if and only if for each s € S, the space X
is acyclic.

Proof. Assume that X is acyclic. Let z € X, x = {z,} be an arbitrary point and
s0 € S. We want to show that the space X, is acyclic. Consider the map

X, —y x o

S0

X

S0

where h(zs,) = {ys}, ys = x5 for each s # so, ys, = 2s, and 7s, is a projection. We
observe that
Tso 0 h = Idx,, .

5
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Hence, the map
hy » Ho(Xs,) = Ho(X)

is a monomorphism, so X, is an acyclic space. Assume now that, for each s € S the
space X, is acyclic. From the mathematical literature (see, [5]) we know that if the
spaces X1, ..., X, are acyclic, then the space X; x ... x X, is acyclic. Let ¥ ={£ C S:
¢ is a finite set}, then (¥, <) is a directed set, where < is an inclusion. Given that

1 3
X —lgn{Yg,wc,Z},

where Ye = Xy, x X, x..x X, &€ = {s1,52,...,5n} C S and for each ( <¢, 7r§ Yy = Y

is a projection. It follows from the continuity of the Cech homology that the space X
is acyclic. O

Lemma 3.4. Let @ be a Hilbert cube. Let S be a nonempty set and let X =[], g X.
Assume that, for each s € S, X, is a compact subset of Qs = Q. The space X has a
trivial shape in T =[], g Qs if and only if for each s € S a space X has a trivial shape

in Q.
Proposition 3.5. If X C T has a trivial shape in T, then X is acyclic.

Proof. Let
Y ={K: K is a compact neighborhood of X in T}

a directed set from the inclusion <, that is, (§ < () © (K¢ C K¢) for each £, € ¥ and
let
X = {K, j¢, $}

be an inverse system, where for £ < (, jg : K¢ — K¢ is an inclusion. Then the inclusion
i¢ : X — K¢ is homotopic to a constant map C¢ : X — K¢, C¢(x) = x for each x € X,
& € ¥ and an arbitrary zg € X. Since Cech homology is continuous, we obtain

(lim ig), = (lim Ce)..

where
(113115)* cH(X) — H*(lan)

is an isomorphism, so X is acyclic. O

Definition 3.6. (Cell-like) Let X be a space. A perfect map o : Z — X is cell-like
if for each compact set K C X there exist a Tychonoff cube T and an embedding
h:a~'(K) — T such that for each x € K the set h(a~'(z)) has a trivial shape in T.

Let A be family sets of compact and nonempty spaces such that the following conditions
are satisfied:

(3) if A is a single-element space, then A € A.
(4) If, for each s € S, A, € A then (H AS> €A,
seS

6
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where S is any, nonempty set. For each A € A there exists a Tychonoff cube T and an
embedding h : A — T such that

(5) h(A) € A.
If A € A is a metrizable space then there exists an embedding h : A — @ such that
(6) h(A) € A

where () is a Hilbert cube. Let X be a space. We will say that a perfect map a: Z — X
is a A map if for each compact set K C X there exist a Tychonoff cube T and an
embedding h : a~!(K) — T such that for each 2 € K the set h(a"!(z)) € A. We
observe that if &« € D(X), then for each nonempty set B C X (not necessarily compact)
ag-1(p) € D(B), where a,—1(p) is a restriction of « to the set a~!(B). Denote

(7) D(X)={a:Z — X; ais a A map}.

The following are examples of D type sets:

(8) HOM(X) = {a: Z — X; «is a homeomorphism},
(9) CELL(X) ={a: Z — X; ais a cell-like map},
(10) V(X)={a:Z — X; ais a Vietoris map}.

We observe that

(11) HOM(X) c CELL(X) C V(X).

4 Relative extensions of maps

In this section we will define the notion of relative extension of maps and prove some
of its properties.

Definition 4.1. (see, Definition 2.7) We say that a space X is a relative extension
(relative neighborhood extension) (we write X € ESR(D), (X € NESR(D))) if for
each compact set K C X there exists a space Zx, ax : Zxg — K, ax € D(K) such
that for each compact space Y, for each closed set A C Y and for each continuous map
f A — Zg the map ax o f has a continuous extension F : Y — X (F : U — X),
where U C Y is some open set such that A C U, that is the following diagram:

jocx
Z 229K, x

[r
A T

is commutative, where T =Y (T'=U),i: A= T and j : K — X are inclusions.

7
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Proposition 4.2. A space X € NESR(HOM)(ESR(HOM)) if and only if X €
NES(ES).

Proof. Let X € NESR(HOM) and let f: A — X be a continuous map, where A CY
is a closed subset of a compact space Y. We denote by K = f(A). There exists a map
ag : Zg — K, ag € HOM(K) such that the conditions of Definition 4.1 are satisfied.
Given that

—1

AL g K g 0K g T x

)

where f(y) = f(y) for each y € A, al}l is an inverse homeomorphism and i is an
inclusion. There exists an extension G : U — X of ax o (a;(l o f) = f, where U C Y is
some open neighborhood of A. The proof in the opposite direction is obvious and the
proof of the second part of this Proposition is analogical. O

Remark 4.3. (see, [9]) Let X,Y be metrizable spaces. We recall that a space X is
a D-retract of Y, if there exist a metrizable space Z C Y, a: Z — X, a € D(X) and
r : Y — X such that ro¢ = a, where ¢ : Z — Y is an inclusion. We will say that
the map r is a D-retraction and a space Z is a D-carrier of X in Y. We will write
X € ANRR(D) (X € ARR(D)) if there exists a normed space E, an open set V C E
such that X is a D-retract of V (E).

We observe that if « : X — Y is a perfect (proper) map such that, for each y € Y, the
set a~!(y) has a trivial shape then a € CELL(Y) (see (6) and Lemma 3.4).

Proposition 4.4. Let X be a metrizable space. If X € ANRR(D)(ARR(D)) then
X € NESR(D)(ESR(D)).

Proof. Let X be a metrizable space and let X € ANRR(D). Then, there exists a
normed space E, an open set V' C F such that X is a D-retract of V; that is, there
exist a space Z C V, a: Z —- X, a € D(X) and r : V — X such that roi = a,
where i : Z < V is an inclusion. Let K C X be a compact set, Zx = o~ !(K) and
ar : Zxk — K, ag(z) = az) for each z € Zg, where axg € D(K). Let us take a
compact space Y, a closed set A C Y and a continuous map f : A — Zg. Then, we
have
Atz Tz 1Ty ",k

where j is an inclusion. There exists an extension G : U — V of i 0 j o f (see, Remark
2.6), where U C Y is some open neighborhood of A. We define an extension F': U — X
of ag o f by the formula

F=roQG.
The proof of the second part of this Proposition is analogical. O

Proposition 4.5. A space (X; x X3) € NESR(D)(ESR(D)) if and only if X; €
NESR(D)(ESR(D)) and X, € NESR(D)(ESR(D)).

Proof. Let (X1 x X3) € NESR(D) and let K C X;(K C X») be a compact set. Then
aset K x {xo} C X1 x Xy ({z1} x K C X x X3) is compact, where (1, x2) € X1 X Xo
is an arbitrary point. From the assumption there exists a map ax : Zxg — K X {z2}

8
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(ag : Zg = {1} xK), ag € D(K x{z2}) (ax € D({z1}x K)) such that the conditions
of Definition 4.1 are satisfied. Let T be a compact space and let f : A — Zg be a
continuous map, where A C T is a closed set. There exists an extension G : U — X7 x X5
of ai o f, where U C T is an open neighborhood of A. We define a map F : U — X3
(F : U — X2) by the formula

F=moG (F=moQG),

where m; : X7 X X9 — X, are projections, ¢ = 1,2. Now, let X; € NESR(D) and
X9 € NESR(D) and let K C X7 x X3 be a compact set. We denote by K; = m;(K),
where m; : X1 x X9 — X, are projections, ¢ = 1,2. There exists a map o, : Zx, — K;,
ag, € D(K;), i = 1,2 such that the conditions of Definition 4.1 are satisfied. It’s
obvious that K C K1 x K. Let o = ag, X ak,, Zk = a‘l(K) and ag : Zg — K,
ax(z) = a(z) for each z € Zg. Let T be a compact space and let f : A — Zk be a
continuous map, where A C T is a closed set. For ¢ = 1,2 we have

A L ZK L} ZKl X ZK2 i ZK oK

K3

i K, Ji X,

where j, j; are inclusions and 7, : Zg, X Zx, — Zk, are projections, ¢ = 1,2. There
exist extensions G; : V; — X, of ag,o(m,ojo f), where V; C T some open neighborhoods
of A,1=1,2. Let U = Vi NV,s. We define an extension F : U — X1 X X5 of ax o f by
the formula

F(t) = (G1(t),G2(t)) for each te U.

The proof of the second part of this Proposition is analogical. O

Proposition 4.6. Let S be a nonempty set and let X = [[,.¢ Xs. If X € NESR(D)
then X; € NESR(D) for each s € S.

Proof. Assume that X € NESR(D). Let sp € S, K C X5, be a compact set and let
{zs} € X be an arbitrary point. Denote

p=]]v.

ses

where for each s # so, Y5 = {xs} and Y;, = K. There exists a map ap € D(K),
ap : Zp — P such that the conditions of Definition 4.1 are satisfied. Let Zx = Zp and
let axg = hoap, where h : P — K is a homeomorphism (restriction of a projection
Tsy * X — Xg,). Let f: A — Zg be a continuous map, where A is a closed subset of
a compact space Y. There exists an extension G : U — X of ag o f, where U C Y
is an open neighborhood of A. We define an extension F' : U — X, of ax o f by the
formula F' = 7y, o G and the proof is complete. O

Proposition 4.7. Let S be a nonempty set and let X = []
ESR(D) if and only if X; € ESR(D) for each s € S.

ses Xs- A space X €

Proof. Assume that X € ESR(D). It follows from Proposition 4.6 that X; € ESR(D)
for each s € S. Let for each s € S the space X; € ESR(D) and let K C X be a
compact set. We denote by Ky = m5(K), where g : X — X is a projection for each

9
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s € S. For each s € S, we take a map agx, € D(Kj), ak, : Zx, — K, such that
the conditions of Definition 4.1 are satisfied. It is obvious that K C ] g K. Let
a = [Liegar, : [lies Zr, = [lses Ks» 2K = a Y (K) and let ay : Zx — K be a
restriction of a. It is clear that ax € D(K). Let f: A — Zk be a map, where A is
a closed subset of a compact space Y and let 7l : Zx — Zk, be a projection for each
s € S. Then, we have

s

aKS iS

AL 7y Zx K, X,

where i, is an inclusion, for each s € S. It follows that for each s € S, there exists an
extension F, : Y — X, of ak, o (7l o f). We define an extension F : Y — X of ax o f
by the formula:

E]

F(y) ={Fs(y)} foreach yeY
and the proof is complete. O

Example 4.8. Let X be a metrizable and non-movable space, ) be a Hilbert cube
and p : @ — X be a cell-like map (see, [7]). Let S be a nonempty set (card(S) > No)
and let Y = HSES Y,, where Y; = X for each s € S. We define a cell-like map
a:T — Y by the formula o = {ps}ses, where T = [[ .4 Qs is a Tychonoff cube and
for each s € S, Qs = Q and ps = p. It is clear that Y € ESR(CELL) (in particular,
Y € NESR(CELL)) is a non-metrizable space. We show that Y ¢ NES. Assume
that Y € NES. Then, from Proposition 4.6, X € NES. Hence X is a neighborhood
retract of @, so X € ANR, but it is a contradiction, since X is a non-movable space
(see Remark 2.9).

5 The abstract morphism

The symbol D(X,Y’) will denote the set of all mappings of the form

X2 7z 1.y,

where p : Z — X denotes a Vietoris map and ¢ : Z — Y denotes a continuous map.
Each such diagram will be denoted by (p,q). Let (p1,q1) € D(X,Y) and (p2,q2) €
D(Y,T). The composition of diagrams (see, [5])

X oz By 2 oz 2.,
is called a diagram (p,q) € D(X,T)
X 22— 21 Nypy 7o —2 T,
where Z1 Ny p, Zo = {(21,22) € Z1 X Zy 1 qi(z1) = p2(22)},
bp=p1o7m, q=4g20T2,

T ™2
Z1 — Z1 Aq1p2 Z2 —_— ZQ,

m1(21, 22) = 21 (Vietoris map), mo(z1,22) = 29 for each (z1,22) € Z.

10
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It shall be written
(P, q) = (p2,q2) © (P1,q1)-

From ([5], p. 201, 202) it also results that the composition of the diagrams satisfies the
condition:

(12) for cach z € X q(p~'(z)) = q2(p3 (@1 (p1 ' (2)))).-

Let (p1,q1), (p2,q2) € D(X,Y). Assume that, in the set D(X,Y’) we have an equivalency
relation (it is denoted as ~,) such that the following conditions are satisfied (see [14,
13, 8]):

(13) ((p1,q1) ~a (p2,q2)) = (for each z € X q1(py () = q2(p5 ' (2))),
(14) ((p1.q1) ~a (2,42)) = (q14 © 1, = G2+ O P3),

Let (p3,q3), (pa,q4) € D(Y,T).

(15)

((p1,q1) ~a (p2,92) and (p3,q3) ~a (P1,q4)) = (((p3,43)0(P1,q1)) ~a (P4, qa)0(P2, G2)))-

Theset My (X,Y) = D(X,Y),., will be called a set of abstract morphisms (a-morphism).
Let (p,q) € D(X,Y). For any p, € M,(X,Y) the set ¢(z) = q(p~'(x)) where
va = [(p,q)]a is called an image of the point x in the a-morphism ¢,. We denote
by ¢ : X —4 Y a multivalued map determined by ¢, € M,(X,Y). We observe from
(12) and (15) that if ¢ : X —, Y is determined by ¢, = [(p1,¢1)]e and ¢ : Y —4 T is
determined by 1, = [(p2,g2)]s then o v : X —, T is determined by

(Y o@)a=I[((p2,92) o (P1,q1))]a-

We recall that a multivalued map ¢ : X — Y is acyclic if for each 2 € X the set ¢(x)
is compact and acyclic. An acyclic map ¢ : X —, Y is determined by ¢, = [(Pp, 9p)]as

where
Py

X r, 2.y
are maps given by formulas: p,(z,y) = z, ¢,(x,y) = y for each (z,y) € I', and I', is a
graph of ¢.

Remark 5.1. Let ¢ : X —, X be a map. We observe that a map ¢ has a fixed point
i.e., there exists a point x € X such that x € ¢(x) if and only if for some (p, q) € @4, p
and ¢ have a coincidence point.

Let TOP denote categories in which Hausdorff topological spaces are objects and con-
tinuous mappings are category mappings. Let TOP, denote categories in which Haus-
dorff topological spaces are objects and multivalued maps determined by abstract mor-
phisms are category mappings. Let VECTqg denote categories in which linear graded
vector spaces are objects and linear mappings of degree zero are category mappings.
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Theorem 5.2. (see [14/) The mapping H, : TOP, —+ VECTg given by the formula

H.(p) = ¢, = q.op, ",

where ¢ is a multivalued map determined by ¢, = [(p, q)]s is a covariant functor and
the extension of the functor of the Cech homology H, : TOP — VECTg.

Let ¢ : X —4 X be a map determined by ¢, = [(p,q)]a, Where (p,q) € D(X, X).
Assume that ¢, = ¢. o p, ! is a Leray endomorphism (see (14)). Then, we define a
Lefschetz number of ¢, by the formula

A(SO*) = A(Q* Op:l)'

We recall that ¢ : X —, X is a Lefschetz map if ¢, is a Leray endomorphism and
A(px) # 0 implies that the map ¢ has a fixed point.

Remark 5.3. A map ¢ : X — Y is admissible if and only if there exists a map
A: X —,Y such that A C ¢, that is, for each x € X, A(x) C p(z).

6 The fixed points of compact maps

In this section we will show that the spaces of NESR(V) type has the fixed point
property.

Theorem 6.1. Let X € NESR(V) and let ¢ : X —, X be a compact map. Then ¢
is a Lefschetz map.

Proof. For K = ¢(X) there exists a map ag : Zxg — K, axg € V(K) such that the
conditions of Definition 4.1 are satisfied. Let h : Zxg — T be an embedding and let
S =h(Zk) C T, where T is some Tychonoff cube. We have the following diagrams:

LS. SN N BN

~ -
X 25 K 2Ky gz g,

where 41 is an inclusion, h~! is an inverse homeomorphism, @(x) = ¢(z) for each z € X

and Wk (z) = ol (z) for each z € K. From the assumption there exists an extension

F:U — X of ag oh™, where U C T is some open set such that S C U. We get the

following commutative diagram:

X v U
) y lwoF
X 4 U,

where @ = io0ho HK opand is: S < U is an inclusion . There exists a locally convex
space L(T) such that T is a retract of L(T) (see, [4]). Let 7 : L(T) — T be a retraction
and let 7 : 7~ 5(U) — U be a map given by 7(x) = r(z) for each x € »~}(U). We have
the following commutative diagram:
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U r~1(U)
¢0F1 y ljon
U J r~1(U),

where j is an inclusion and n = ¢ o F'o7r. From Proposition 2.1 and Theorem 2.4 a
Lefschetz number A(y,) is well defined and A(p.) = A((j o 17)«). Assume now, that
A(ps) # 0 then from Theorem 2.4 the map j o n has a fixed point (see, Remark 5.1).
Hence, the map ¢ o F' has a fixed point. Let x € U be a fixed point of ¢ o F. It follows
that

F(z) € (& x(3(F(2)))) = 3(F(x)) = o(F ().

Thus, ¢ is a Lefschetz map. O

7 The fixed points of noncompact maps

Let " = popo...op, (nth iterate of ¢), where n € N.

Definition 7.1. A map ¢ : X —, X is called a compact absorbing contraction (written
p € CAC(X)) provided there is an open set U C X such that:

(7.1.1) p(U) C U and the map ¢y : U —4 U, pu(z) = ¢(x) for every z € X is
compact,

(7.1.2) for every x € X there exists n = ny such that ¢"(z) C U.

Lemma 7.2. (see [5]) Let ¢ € CAC(X) and U be an open subset X as in Definition
7.1. If K is a compact subset of X, then there exists n € N such that ¢"(K) C U.

Let p: X —o Y be amap and let A C X and B C Y be nonempty sets. Assume that
¢(A) C B. We denote by ¢ : (X, A) — (Y, B) a map of pairs, that is, ¢(x) = ¢(z) for
each r € X.

Lemma 7.3. (see [5]) Let ¢ : (X,A) —4 (X, A) be a map of pairs. If any two of
endomorphisms @, : H(X,A) —» H(X,A), p.: HX) - H(X), ga« : H(A) — H(A)
are Leray endomorphisms, then so is the third and

A(@s) = Aps) — Apas)-
Lemma 7.4. Let X € NESR(D). If U C X is an open set then U € NESR(D).

Proof. Let U C X be an open set and let K C U be a compact set. There exists
ag : Zxg — K, ag € D(K) such that the conditions of Definition 4.1 are satisfied.
Let Y be a compact space and let f : A — Zx be a continuous map, where A C Y is
a closed set. From the assumption there exists an extension Fj : V7 — X of ax o f,
where V) C Y is some open neighborhood of A. The set V = Fl_l(U) C Y is an open
neighborhood of A. We define an extension F': V' — U of ak o f given by the formula

F(x) = Fy(z) for each z € V.
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Let p: X —4 X be a map. Denote
Fiz(p) ={x e X: z € p(x)}.

Theorem 7.5. Let X be a space and let ¢ € CAC(X). Assume further that there

exists a space A C X such that A € NESR(V) and ¢(U) C A, where U is chosen
according to Definition 7.1, then ¢ is a Lefschetz map.

Proof. Let ¢ : U —, U N A be a map given by ¢(z) = ¢(z) for all x € U. By the
assumption, a map v is well-defined. We observe that (U N A) € NESR(V) (see,
Lemma 7.4). A homomorphism @, : H(X,U) — H(X,U) is weakly nilpotent (see,
[12]). Hence, from Proposition 2.2 we get A($,) = 0. We have a following commutative
diagram:

HUNA)— + HU)

SDAOU*{ dj* [SDU*

HUNA)—"  HU),

where ¢ : U N A — U is an inclusion. From the above diagram and Proposition 2.1, it
results that oy, is a Leray endomorphism and A(¢ps) = A(panu«) (see, Theorem 6.1).
Hence, from Lemma 7.3, we get that ¢, is a Leray endomorphism and A(p.) = A(pp.).
Assume that A(ps) # 0. Then A(panus) # 0 and p4qy has a fixed point (see, Theorem
6.1). It is clear that Fiz(pany) C Fiz(p), so ¢ is a Lefschetz map. O

8 Conclusion

In section 3 the notions of a trivial shape in topological spaces are given. In section 4 the
notions of F.S and NFES are generalized. Example 4.8 shows that the class of spaces of
NESR(CELL) (ESR(CELL)) type is essentially wider than the class of spaces of NES
(ES) type. We prove that in the class of metrizable spaces ANRR(D) C NESR(D)
(ARR(D) ¢ ESR(D)). In sections 6 and 7, we prove that the spaces of NESR(V) type
(in particular NESR(CELL)) have the fixed point property. It is worth mentioning
that this article is strongly related to [10, 9, 11].
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