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Abstract. In this paper, closed forms of the summation formulas for generalized Fibonacci numbers are

presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,

Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered.

Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about

their discovery.
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1. Introduction

In [4] Horadam de�ned a generalization of Fibonacci sequence as a second-order linear recurrence se-

quence fWn(W0;W1; r; s)g, or simply fWng, as follows:

(1.1) Wn = rWn�1 + sWn�2; W0 = a; W1 = b; (n � 2)

whereW0;W1 are arbitrary complex numbers and r; s are complex numbers, see also Horadam [3], [5] and [6].

Now these generalized Fibonacci numbers fWn(a; b; r; s)g are also called Horadam numbers. The sequence

fWngn�0 can be extended to negative subscripts by de�ning

W�n = �
r

s
W�(n�1) +

1

s
W�(n�2)

for n = 1; 2; 3; ::: when s 6= 0: Therefore, recurrence (1.1) holds for all integer n:

For some speci�c values of a; b; r and s, it is worth presenting these special Horadam numbers in a table

as a speci�c name. In literature, for example, the following names and notations (see Table 1) are used for

the special cases of r; s and initial values.

Table 1. A few special case of generalized Fibonacci sequences.
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Name of sequence Notation: Wn(a; b; r; s) OEIS: [12]

Fibonacci Fn =Wn(0; 1; 1; 1) A000045

Lucas Ln =Wn(2; 1; 1; 1) A000032

Pell Pn =Wn(0; 1; 2; 1) A000129

Pell-Lucas Qn =Wn(2; 2; 2; 1) A002203

Jacobsthal Jn =Wn(0; 1; 1; 2) A001045

Jacobsthal-Lucas jn =Wn(2; 1; 1; 2) A014551
In this work, we investigate some summation formulas of generalized Fibonaci numbers. We present

some works on summing formulas of the numbers in the following Table 2.

Table 2. A few special study of sum formulas.

Name of sequence Papers which deal with summing formulas

Pell and Pell-Lucas [7], [9, 10]

Generalized Fibonacci [1,8,13,14,15]

Generalized Tribonacci [2,11,16,17]

Generalized Tetranacci [18,19, 23]

Generalized Pentanacci [20,21]

Generalized Hexanacci [22]

2. Summing Formulas of Generalized Fibonacci Numbers with Positive Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with positive

subscripts.

Theorem 2.1. Let x be a complex number. For n � 0 we have the following formulas:

(a): If sx2 + rx� 1 6= 0 then
nX
k=0

xkWk =
xn+2Wn+2 + x

n+1(1� rx)Wn+1 � xW1 + (rx� 1)W0

sx2 + rx� 1 :

(b): If r2x� s2x2 + 2sx� 1 6= 0 then
nX
k=0

xkW2k =
�xn+1 (sx� 1)W2n+2 + rsx

n+2W2n+1 � rxW1 + (r
2x+ sx� 1)W0

r2x� s2x2 + 2sx� 1 :

(c): If r2x� s2x2 + 2sx� 1 6= 0 then
nX
k=0

xkW2k+1 =
rxn+1W2n+2 � sxn+1 (sx� 1)W2n+1 + (sx� 1)W1 � rsxW0

r2x� s2x2 + 2sx� 1 :

Proof.

(a): Using the recurrence relation

Wn = rWn�1 + sWn�2
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i.e.

sWn�2 =Wn � rWn�1

we obtain

sx1W1 = x1W3 � rx1W2

sx2W2 = x2W4 � rx2W3

...

sxn�1Wn�1 = xn�1Wn+1 � rxn�1Wn

sxnWn = xnWn+2 � rxnWn+1:

If we add the equations by side by, we get

nX
k=0

xkWk =
xn+2Wn+2 + x

n+1(1� rx)Wn+1 � xW1 + (rx� 1)W0

sx2 + rx� 1 :

(b) and (c): Using the recurrence relation

Wn = rWn�1 + sWn�2

i.e.

rWn�1 =Wn � sWn�2

we obtain

rx1W3 = x1W4 � sx1W2

rx2W5 = x2W6 � sx2W4

rx3W7 = x3W8 � sx3W6

...

rxn�1W2n�1 = xn�1W2n � sxn�1W2n�2

rxnW2n+1 = xnW2n+2 � sxnW2n:

Now, if we add the above equations by side by, we get

(2.1) r(�W1 +
nX
k=0

xkW2k+1) = (x
nW2n+2 �W2 � x�1W0 +

nX
k=0

xk�1W2k)� s(�W0 +
nX
k=0

xkW2k):

Similarly, using the recurrence relation

Wn = rWn�1 + sWn�2

i.e.

rWn�1 =Wn � sWn�2
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we write the following obvious equations;

rx1W2 = x1W3 � sx1W1

rx2W4 = x2W5 � sx2W3

rx3W6 = x3W7 � sx3W5

...

rxn�1W2n�2 = xn�1W2n�1 � sxn�1W2n�3

rxnW2n = xnW2n+1 � sxnW2n�1

Now, if we add the above equations by side by, we obtain

(2.2) r(�W0 +
nX
k=0

xkW2k) = (�W1 +
nX
k=0

xkW2k+1)� s(�xn+1W2n+1 +
nX
k=0

xk+1W2k+1):

Then, solving the system (2.1)-(2.2), the required result of (b) and (c) follow.

2.1. The Case x = 1. The case x = 1 of Theorem 2.1 is given in [14]. In this subsection, we only

consider the case x = 1; r = 1; s = 2 and we present a theorem which its proof is di¤erent than given in [14]

(in fact the formulas given in the following theorem are in di¤erent forms than given in [14]).

Observe that setting x = 1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem 2.1 (b) and

(c) makes the right hand side of the sum formulas to be an indeterminate form. Application of L�Hospital

rule however provides the evaluation of the sum formulas. If r = 1; s = 2 then we have the following theorem.

Theorem 2.2. If r = 1; s = 2 then for n � 0 we have the following formulas:

(a):
nX
k=0

Wk =
1

2
(Wn+2 �W1):

(b):
nX
k=0

W2k =
1

3
((n+ 3)W2n+2 � 2 (n+ 2)W2n+1 +W1 � 3W0):

(c):
nX
k=0

W2k+1 =
1

3
(� (n+ 1)W2n+2 + 2 (n+ 3)W2n+1 � 2W1 + 2W0):

Proof.

(a): Take x = 1; r = 1; s = 2 in Theorem 2.1 (a).

(b): We use Theorem 2.1 (b). If we set r = 1; s = 2 in Theorem 2.1 (b) then we have

nX
k=0

xkW2k =
�xn+1 (2x� 1)W2n+2 + 2x

n+2W2n+1 � xW1 + (3x� 1)W0

�4x2 + 5x� 1 :
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For x = 1; the right hand side of the above sum formulas is an indeterminate form. Now, we can

use L�Hospital rule. Then we get
nX
k=0

W2k =
d
dx (�x

n+1 (2x� 1)W2n+2 + 2x
n+2W2n+1 � xW1 + (3x� 1)W0)

d
dx (�4x2 + 5x� 1)

�����
x=1

=
1

3
((n+ 3)W2n+2 � 2 (n+ 2)W2n+1 +W1 � 3W0):

(c): We use Theorem 2.1 (c). If we set r = 1; s = 2 in Theorem 2.1 (c) then we have
nX
k=0

xkW2k+1 =
xn+1W2n+2 � 2xn+1 (2x� 1)W2n+1 + (2x� 1)W1 � 2xW0

�4x2 + 5x� 1 :

For x = 1; the right hand side of the above sum formulas is an indeterminate form. Now, we can

use L�Hospital rule. Then we obtain
nX
k=0

W2k+1 =
d
dx (x

n+1W2n+2 � 2xn+1 (2x� 1)W2n+1 + (2x� 1)W1 � 2xW0)
d
dx (�4x2 + 5x� 1)

�����
x=1

=
1

3
(� (n+ 1)W2n+2 + 2 (n+ 3)W2n+1 � 2W1 + 2W0):

Note that di¤erent forms of the sum formulas of the above Theorem (b) and (c) are given in [14].

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 2.3. For n � 0; Jacobsthal numbers have the following property:

(a):
Pn

k=0 Jk =
1
2 (Jn+2 � 1):

(b):
Pn

k=0 J2k =
1
3 ((n+ 3) J2n+2 � 2 (n+ 2) J2n+1 + 1):

(c):
Pn

k=0 J2k+1 =
1
3 (� (n+ 1) J2n+2 + 2 (n+ 3) J2n+1 � 2):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.4. For n � 0; Jacobsthal-Lucas numbers have the following property:

(a):
Pn

k=0 jk =
1
2 (jn+2 � 1):

(b):
Pn

k=0 j2k =
1
3 ((n+ 3) j2n+2 � 2 (n+ 2) j2n+1 � 5):

(c):
Pn

k=0 j2k+1 =
1
3 (� (n+ 1) j2n+2 + 2 (n+ 3) j2n+1 + 2):

2.2. The Case x = �1. We now consider the case x = �1 in Theorem 2.1. The following theorem

presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 2.5. For n � 0 we have the following formulas:

(a): If s� r � 1 6= 0 then
nX
k=0

(�1)kWk =
(�1)nWn+2 + (�1)n+1 (r + 1)Wn+1 +W1 � (r + 1)W0

s� r � 1 :
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(b): If �r2 � s2 � 2s� 1
nX
k=0

(�1)kW2k =
(�1)n+1 (s+ 1)W2n+2 + (�1)n rsW2n+1 + rW1 �

�
r2 + s+ 1

�
W0

�r2 � s2 � 2s� 1 :

(c): If �r2 � s2 � 2s� 1 6= 0 then
nX
k=0

(�1)kW2k+1 =
(�1)n+1 rW2n+2 + (�1)n+1 s (s+ 1)W2n+1 �W1 (s+ 1) + rsW0

�r2 � s2 � 2s� 1 :

Taking r = s = 1 in Theorem 2.5 (a), (b) and (c) we obtain the following proposition.

Proposition 2.6. If r = s = 1 then for n � 0 we have the following formulas:

(a):
Pn

k=0(�1)kWk = (�1)n+1Wn+2 + 2 (�1)nWn+1 + 2W0 �W1:

(b):
Pn

k=0(�1)kW2k =
1
5 (2 (�1)

n
W2n+2 + (�1)n+1W2n+1 �W1 + 3W0):

(c):
Pn

k=0(�1)kW2k+1 =
1
5 ((�1)

n
W2n+2 + 2 (�1)nW2n+1 + 2W1 �W0):

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 2.7. For n � 0; Fibonacci numbers have the following properties:

(a):
Pn

k=0(�1)kFk = (�1)
n+1

Fn+2 + 2 (�1)n Fn+1 � 1:

(b):
Pn

k=0(�1)kF2k = 1
5 (2 (�1)

n
F2n+2 + (�1)n+1 F2n+1 � 1):

(c):
Pn

k=0(�1)kF2k+1 = 1
5 ((�1)

n
F2n+2 + 2 (�1)n F2n+1 + 2):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 2.8. For n � 0; Lucas numbers have the following properties:

(a):
Pn

k=0(�1)kLk = (�1)
n+1

Ln+2 + 2 (�1)n Ln+1 + 3:

(b):
Pn

k=0(�1)kL2k = 1
5 (2 (�1)

n
L2n+2 + (�1)n+1 L2n+1 + 5):

(c):
Pn

k=0(�1)kL2k+1 = 1
5 ((�1)

n
L2n+2 + 2 (�1)n L2n+1):

Taking r = 2; s = 1 in Theorem 2.5 (a), (b) and (c) we obtain the following proposition.

Proposition 2.9. If r = 2; s = 1 then for n � 0 we have the following formulas:

(a):
Pn

k=0(�1)kWk =
1
2 ((�1)

n+1
Wn+2 + 3 (�1)nWn+1 �W1 + 3W0):

(b):
Pn

k=0(�1)kW2k =
1
4 ((�1)

n
W2n+2 + (�1)n+1W2n+1 �W1 + 3W0):

(c):
Pn

k=0(�1)kW2k+1 =
1
4 ((�1)

n
W2n+2 + (�1)nW2n+1 +W1 �W0):

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers

(take Wn = Pn with P0 = 0; P1 = 1).

Corollary 2.10. For n � 0; Pell numbers have the following properties:
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(a):
Pn

k=0(�1)kPk = 1
2 ((�1)

n+1
Pn+2 + 3 (�1)n Pn+1 � 1):

(b):
Pn

k=0(�1)kP2k = 1
4 ((�1)

n
P2n+2 + (�1)n+1 P2n+1 � 1):

(c):
Pn

k=0(�1)kP2k+1 = 1
4 ((�1)

n
P2n+2 + (�1)n P2n+1 + 1):

Taking Wn = Qn with Q0 = 2; Q1 = 2 in the last proposition, we have the following corollary which

presents sum formulas of Pell-Lucas numbers.

Corollary 2.11. For n � 0; Pell-Lucas numbers have the following properties:

(a):
Pn

k=0(�1)kQk = 1
2 ((�1)

n+1
Qn+2 + 3 (�1)nQn+1 + 4):

(b):
Pn

k=0(�1)kQ2k = 1
4 ((�1)

n
Q2n+2 + (�1)n+1Q2n+1 + 4):

(c):
Pn

k=0(�1)kQ2k+1 = 1
4 ((�1)

n
Q2n+2 + (�1)nQ2n+1):

Observe that setting x = �1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem 2.1

(a) makes the right hand side of the sum formula to be an indeterminate form. Application of L�Hospital

rule however provides the evaluation of the sum formula of (a). If r = 1; s = 2 then we have the following

theorem.

Theorem 2.12. If r = 1; s = 2 then for n � 0 we have the following formulas:

(a):
Pn

k=0(�1)kWk =
1
3 ((n+ 2) (�1)

nWn+2 + (2n+ 3) (�1)n+1Wn+1 +W1 �W0):

(b):
Pn

k=0(�1)kW2k =
1
10 (3 (�1)

n
W2n+2 + 2 (�1)n+1W2n+1 �W1 + 4W0):

(c):
Pn

k=0(�1)kW2k+1 =
1
10 ((�1)

n
W2n+2 + 6 (�1)nW2n+1 + 3W1 � 2W0):

Proof.

(a): We use Theorem 2.1 (a). If we set r = 1; s = 2 in Theorem 2.1 (a) then we have
nX
k=0

xkWk =
xn+2Wn+2 � xn+1 (x� 1)Wn+1 � xW1 + (x� 1)W0

2x2 + x� 1 :

For x = �1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.
nX
k=1

(�1)kWk =
d
dx (x

n+2Wn+2 � xn+1 (x� 1)Wn+1 � xW1 + (x� 1)W0)
d
dx (2x

2 + x� 1)

�����
x=�1

=
1

3
((n+ 2) (�1)nWn+2 + (2n+ 3) (�1)n+1Wn+1 +W1 �W0):

(b): Taking x = �1; r = 1; s = 2 in Theorem 2.1 (b) we obtain (b).

(c): Taking x = �1; r = 1; s = 2 in Theorem 2.1 (c) we obtain (c).

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 2.13. For n � 0; Jacobsthal numbers have the following property:

(a):
Pn

k=0(�1)kJk = 1
3 ((n+ 2) (�1)

nJn+2 + (2n+ 3) (�1)n+1Jn+1 + 1):
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(b):
Pn

k=0(�1)kJ2k = 1
10 (3 (�1)

n
J2n+2 + 2 (�1)n+1 J2n+1 � 1):

(c):
Pn

k=0(�1)kJ2k+1 = 1
10 ((�1)

n
J2n+2 + 6 (�1)n J2n+1 + 3):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.14. For n � 0; Jacobsthal-Lucas numbers have the following property:

(a):
Pn

k=0(�1)kjk = 1
3 ((n+ 2) (�1)

njn+2 + (2n+ 3) (�1)n+1jn+1 � 1):

(b):
Pn

k=0(�1)kj2k = 1
10 (3 (�1)

n
j2n+2 + 2 (�1)n+1 j2n+1 + 7):

(c):
Pn

k=0(�1)kj2k+1 = 1
10 ((�1)

n
j2n+2 + 6 (�1)n j2n+1 � 1):

2.3. The Case x = 1+ i. We now consider the complex case x = 1+ i in Theorem 2.1. The following

theorem presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 2.15. For n � 0 we have the following formulas:

(a): If (1 + i) r + 2is� 1 6= 0; then
nX
k=0

(1 + i)kWk =
(1 + i)

n+2
Wn+2 � (1 + i)n+1 ((1 + i) r � 1)Wn+1 � (1 + i)W1 + ((1 + i) r � 1)W0

(1 + i) r + 2is� 1 :

(b): If (1 + i) r2 � 2is2 + (2 + 2i) s� 1 6= 0 then
nX
k=0

(1 + i)kW2k

=
� ((1 + i))n+1 ((1 + i) s� 1)W2n+2 + ((1 + i))

n+2
rsW2n+1 � (1 + i) rW1 +

�
(1 + i) r2 + (1 + i) s� 1

�
W0

(1 + i) r2 � 2is2 + (2 + 2i) s� 1 :

(c): If (1 + i) r2 � 2is2 + (2 + 2i) s� 1 6= 0 then
nX
k=0

(1+i)kW2k+1 =
((1 + i))

n+1
rW2n+2 � ((1 + i))n+1 s ((1 + i) s� 1)W2n+1 + ((1 + i) s� 1)W1 � (1 + i) rsW0

(1 + i) r2 � 2is2 + (2 + 2i) s� 1 :

Taking r = 1; s = 1 in the last theorem we obtain the following proposition.

Proposition 2.16. If r = s = 1 then for n � 0 we have the following formulas:

(a):
Pn

k=0(1 + i)
kWk =

1
3i ((1 + i)

n+2
Wn+2 � i (1 + i)n+1Wn+1 � (1 + i)W1 + iW0):

(b):
Pn

k=0(1 + i)
kW2k =

1
2+i (�i (1 + i)

n+1
W2n+2 + (1 + i)

n+2
W2n+1 � (1 + i)W1 + (1 + 2i)W0):

(c):
Pn

k=0(1 + i)
kW2k+1 =

1
2+i ((1 + i)

n+1
W2n+2 � i (1 + i)n+1W2n+1 + iW1 � (1 + i)W0)

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 2.17. For n � 0; Fibonacci numbers have the following properties.

(a):
Pn

k=0(1 + i)
kFk =

1
3i ((1 + i)

n+2
Fn+2 � i (1 + i)n+1 Fn+1 � 1� i):

(b):
Pn

k=0(1 + i)
kF2k =

1
2+i (�i (1 + i)

n+1
F2n+2 + (1 + i)

n+2
F2n+1 � 1� i):
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(c):
Pn

k=0(1 + i)
kF2k+1 =

1
2+i ((1 + i)

n+1
F2n+2 � i (1 + i)n+1 F2n+1 + i):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 2.18. For n � 0; Lucas numbers have the following properties.

(a):
Pn

k=0(1 + i)
kLk =

1
3i ((1 + i)

n+2
Ln+2 � i (1 + i)n+1 Ln+1 � 1 + i):

(b):
Pn

k=0(1 + i)
kL2k =

1
2+i (�i (1 + i)

n+1
L2n+2 + (1 + i)

n+2
L2n+1 + 1 + 3i):

(c):
Pn

k=0(1 + i)
kL2k+1 =

1
2+i ((1 + i)

n+1
L2n+2 � i (1 + i)n+1 L2n+1 � 2� i):

3. Summing Formulas of Generalized Fibonacci Numbers with Negative Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with negative

subscripts.

Theorem 3.1. Let x be a complex number. For n � 1 we have the following formulas:

(a): If s+ rx� x2 6= 0; then
nX
k=1

xkW�k =
�xn+1 (s+ rx)W�n�1 � sxn+2W�n�2 + xW1 + x (x� r)W0

s+ rx� x2 :

(b): If r2x+ 2sx� s2 � x2 6= 0 then
nX
k=1

xkW�2k =
xn+1 (s� x)W�2n � rsxn+1W�2n�1 + rxW1 + x(x� s� r2)W0

r2x+ 2sx� s2 � x2 :

(c): If r2x+ 2sx� s2 � x2 6= 0 then
nX
k=1

xkW�2k+1 =
�rxn+2W�2n + sx

n+1 (s� x)W�2n�1 + x (x� s)W1 + rsxW0

r2x+ 2sx� s2 � x2 :

Proof. The proof of the theorem can be given as in the proof of Theorem 2.1, so we omit it.

3.1. The Case x = 1. The case x = 1 of Theorem 3.1 is given in [15], see also [14]. In this subsection,

we only consider the case x = 1; r = 1; s = 2 and we present a theorem which its proof is di¤erent than given

in [15] (in fact the formulas given in the following theorem are in di¤erent forms than given in [15]).

Observe that setting x = 1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem (b) and (c)

makes the right hand side of the sum formulas to be an indeterminate form. Application of L�Hospital rule

however provides the evaluation of the sum formulas. If r = 1; s = 2 then we have the following theorem.

Theorem 3.2. If r = 1; s = 2 then for n � 1 we have the following formulas:

(a):
nX
k=1

W�k =
1

2
(�3W�n�1 � 2W�n�2 +W1):
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(b):
nX
k=1

W�2k =
1

3
(nW�2n � 2(n+ 1)W�2n�1 +W1 �W0):

(c):
nX
k=1

W�2k+1 =
1

3
(� (n+ 2)W�2n + 2nW�2n�1 + 2W0):

Proof.

(a): Take x = 1; r = 1; s = 2 in Theorem 3.1 (a).

(b): We use Theorem 3.1 (b). If we set r = 1; s = 2 in Theorem 3.1 (b) then we have
nX
k=1

xkW�k =
� (x� 2)xn+1W�2n � 2xn+1W�2n�1 + xW1 + x (x� 3)W0

�x2 + 5x� 4 :

For x = 1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.
nX
k=0

W2k =
d
dx (� (x� 2)x

n+1W�2n � 2xn+1W�2n�1 + xW1 + x (x� 3)W0)
d
dx (�x2 + 5x� 4)

�����
x=1

=
1

3
(nW�2n � 2(n+ 1)W�2n�1 +W1 �W0):

(c): We use Theorem 3.1 (c). If we set r = 1; s = 2 in Theorem 3.1 (c) then we have
nX
k=1

xkW�2k+1 =
�xn+2W�2n � 2 (x� 2)xn+1W�2n�1 + x (x� 2)W1 + 2xW0

�x2 + 5x� 4 :

For x = 1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.
nX
k=0

W2k+1 =
d
dx (�x

n+2W�2n � 2 (x� 2)xn+1W�2n�1 + x (x� 2)W1 + 2xW0)
d
dx (�x2 + 5x� 4)

�����
x=1

=
1

3
(� (n+ 2)W�2n + 2nW�2n�1 + 2W0):

Note that di¤erent forms of the sum formulas of the above Theorem (b) and (c) are given in [15].

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 3.3. For n � 1; Jacobsthal numbers have the following property:

(a):
Pn

k=1 J�k =
1
2 (�3J�n�1 � 2J�n�2 + 1):

(b):
Pn

k=1 J�2k =
1
3 (nJ�2n � 2(n+ 1)J�2n�1 + 1):

(c):
Pn

k=1 J�2k+1 =
1
3 (� (n+ 2) J�2n + 2nJ�2n�1):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.4. For n � 1; Jacobsthal numbers have the following property:
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(a):
Pn

k=1 j�k =
1
2 (�3j�n�1 � 2j�n�2 + 1):

(b):
Pn

k=1 j�2k =
1
3 (nj�2n � 2(n+ 1)j�2n�1 � 1):

(c):
Pn

k=1 j�2k+1 =
1
3 (� (n+ 2) j�2n + 2nj�2n�1 + 4):

3.2. The Case x = �1. We now consider the case x = �1 in Theorem 3.1. The following theorem

presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 3.5. For n � 1 we have the following formulas:

(a): If r + s� 1 6= 0; then
nX
k=1

(�1)kW�k =
(�1)n+1 (r � s)W�n�1 � (�1)n sW�n�2 �W1 + (r + 1)W0

s� r � 1 :

(b): If �r2 � s2 � 2s� 1 6= 0 then
nX
k=1

(�1)kW�2k =
(�1)n+1 (s+ 1)W�2n + (�1)n rsW�2n�1 � rW1 +

�
r2 + s+ 1

�
W0

�r2 � s2 � 2s� 1 :

(c): If �r2 � s2 � 2s� 1 6= 0 then
nX
k=1

(�1)kW�2k+1 =
(�1)n+1 rW�2n + (�1)n+1 s (s+ 1)W�2n�1 + (s+ 1)W1 � rsW0

�r2 � s2 � 2s� 1 :

Taking r = s = 1 in Theorem 3.5 (a), (b) and (c) we obtain the following proposition.

Proposition 3.6. If r = s = 1 then for n � 1 we have the following formulas:

(a):
Pn

k=1(�1)kW�k = (�1)nW�n�2 +W1 � 2W0:

(b):
Pn

k=1(�1)kW�2k =
1
5 (2 (�1)

n
W�2n � (�1)nW�2n�1 +W1 � 3W0):

(c):
Pn

k=1(�1)kW�2k+1 =
1
5 ((�1)

n
W�2n + 2 (�1)nW�2n�1 � 2W1 +W0):

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 3.7. For n � 1; Fibonacci numbers have the following properties.

(a):
Pn

k=1(�1)kF�k = (�1)
n
F�n�2 + 1:

(b):
Pn

k=1(�1)kF�2k = 1
5 (2 (�1)

n
F�2n � (�1)n F�2n�1 + 1):

(c):
Pn

k=1(�1)kF�2k+1 = 1
5 ((�1)

n
F�2n + 2 (�1)n F�2n�1 � 2):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 3.8. For n � 1; Lucas numbers have the following properties.

(a):
Pn

k=1(�1)kL�k = (�1)
n
L�n�2 � 3:

(b):
Pn

k=1(�1)kL�2k = 1
5 (2 (�1)

n
L�2n � (�1)n L�2n�1 � 5):

(c):
Pn

k=1(�1)kL�2k+1 = 1
5 ((�1)

n
L�2n + 2 (�1)n L�2n�1):
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Taking r = 2; s = 1 in Theorem 3.5 (a), (b) and (c) we obtain the following proposition.

Proposition 3.9. If r = 2; s = 1 then for n � 1 we have the following formulas:

(a):
Pn

k=1(�1)kW�k =
1
2 ((�1)

n
W�n�1 + (�1)nW�n�2 +W1 � 3W0):

(b):
Pn

k=1(�1)kW�2k =
1
4 ((�1)

n
W�2n + (�1)n+1W�2n�1 +W1 � 3W0):

(c):
Pn

k=1(�1)kW�2k+1 =
1
4 ((�1)

n
W�2n + (�1)nW�2n�1 �W1 +W0):

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers

(take Wn = Pn with P0 = 0; P1 = 1).

Corollary 3.10. For n � 1; Pell numbers have the following properties.

(a):
Pn

k=1(�1)kP�k = 1
2 ((�1)

n
P�n�1 + (�1)n P�n�2 + 1):

(b):
Pn

k=1(�1)kP�2k = 1
4 ((�1)

n
P�2n + (�1)n+1 P�2n�1 + 1):

(c):
Pn

k=1(�1)kP�2k+1 = 1
4 ((�1)

n
P�2n + (�1)n P�2n�1 � 1):

Taking Wn = Qn with Q0 = 2; Q1 = 2 in the last proposition, we have the following corollary which

presents sum formulas of Pell-Lucas numbers.

Corollary 3.11. For n � 1; Pell-Lucas numbers have the following properties.

(a):
Pn

k=1(�1)kQ�k = 1
2 ((�1)

n
Q�n�1 + (�1)nQ�n�2 � 4):

(b):
Pn

k=1(�1)kQ�2k = 1
4 ((�1)

n
Q�2n + (�1)n+1Q�2n�1 � 4):

(c):
Pn

k=1(�1)kQ�2k+1 = 1
4 ((�1)

n
Q�2n + (�1)nQ�2n�1):

Observe that setting x = �1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem 3.1

(a) makes the right hand side of the sum formula to be an indeterminate form. Application of L�Hospital

rule however provides the evaluation of the sum formula of (a). If r = 1; s = 2 then we have the following

theorem.

Theorem 3.12. If r = 1; s = 2 then for n � 1 we have the following formulas:

(a):
Pn

k=1(�1)kW�k =
1
3 (n(�1)

n+1W�n�1 + 2 (n+ 2) (�1)nW�n�2 +W1 � 3W0):

(b):
Pn

k=1(�1)kW�2k =
1
10 (3 (�1)

n
W�2n + 2 (�1)n+1W�2n�1 +W1 � 4W0):

(c):
Pn

k=1(�1)kW�2k+1 =
1
10 ((�1)

n
W�2n + 6 (�1)nW�2n�1 � 3W1 + 2W0):

Proof.

(a): We use Theorem 3.1 (a). If we set r = 1; s = 2 in Theorem 3.1 (a) then we have

nX
k=1

xkW�k =
� (x+ 2)xn+1W�n�1 � 2xn+2W�n�2 + xW1 + x (x� 1)W0

�x2 + x+ 2 :
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For x = �1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.

nX
k=1

(�1)kW�k =
d
dx (� (x+ 2)x

n+1W�n�1 � 2xn+2W�n�2 + xW1 + x (x� 1)W0)
d
dx (�x2 + x+ 2)

�����
x=�1

=
1

3
(n(�1)n+1W�n�1 + 2 (n+ 2) (�1)nW�n�2 +W1 � 3W0):

(b): Take x = �1; r = 1; s = 2 in Theorem 3.1 (b).

(c): Take x = �1; r = 1; s = 2 in Theorem 3.1 (c).

From the last theorem, we have the following corollary which gives sum formula of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 3.13. For n � 1; Jacobsthal numbers have the following property:

(a):
Pn

k=1(�1)kJ�k = 1
3 (n(�1)

n+1J�n�1 + 2 (n+ 2) (�1)nJ�n�2 + 1):

(b):
Pn

k=1(�1)kJ�2k = 1
10 (3 (�1)

n
J�2n + 2 (�1)n+1 J�2n�1 + 1):

(c):
Pn

k=1(�1)kJ�2k+1 = 1
10 ((�1)

n
J�2n + 6 (�1)n J�2n�1 � 3):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.14. For n � 1; Jacobsthal-Lucas numbers have the following property:

(a):
Pn

k=1(�1)kj�k = 1
3 (n(�1)

n+1j�n�1 + 2 (n+ 2) (�1)nj�n�2 � 5):

(b):
Pn

k=1(�1)kj�2k = 1
10 (3 (�1)

n
j�2n + 2 (�1)n+1 j�2n�1 � 7):

(c):
Pn

k=1(�1)kj�2k+1 = 1
10 ((�1)

n
j�2n + 6 (�1)n j�2n�1 + 1):

3.3. The Case x = 1+ i. We now consider the complex case x = 1+ i in Theorem 3.1. The following

theorem presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 3.15. For n � 1 we have the following formulas:

(a): If (1 + i) r + s� 2i 6= 0; then
nX
k=1

(1+i)kW�k =
� (1 + i)n+1 ((1 + i) r + s)W�n�1 � (1 + i)n+2 sW�n�2 + (1 + i)W1 � (1 + i) (r � 1� i)W0

(1 + i) r + s� 2i :

(b): If (1 + i) r2 � s2 + (2 + 2i) s� 2i 6= 0 then
nX
k=1

(1+i)kW�2k =
(1 + i)

n+1
(s� 1� i)W�2n � (1 + i)n+1 rsW�2n�1 + (1 + i) rW1 � (1 + i)

�
r2 + s� 1� i

�
W0

(1 + i) r2 � s2 + (2 + 2i) s� 2i :

(c): If (1 + i) r2 � s2 + (2 + 2i) s� 2i 6= 0 then
nX
k=1

(1+i)kW�2k+1 =
� (1 + i)n+2 rW�2n + (1 + i)

n+1
s (s� 1� i)W�2n�1 � (1 + i) (s� 1� i)W1 + (1 + i) rsW0

(1 + i) r2 � s2 + (2 + 2i) s� 2i :

Taking r = s = 1 in the last theorem we obtain the following proposition.
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Proposition 3.16. If r = s = 1 then for n � 1 we have the following formulas:

(a):
Pn

k=1(1+i)
kW�k =

1
2�i (� (2 + i) (1 + i)

n+1
W�n�1�(1 + i)n+2W�n�2+(1 + i)W1�(1� i)W0):

(b):
Pn

k=1(1 + i)
kW�2k =

1
2+i (�i (1 + i)

n+1
W�2n � (1 + i)n+1W�2n�1 + (1 + i)W1 � 2W0):

(c):
Pn

k=1(1+ i)
kW�2k+1 =

1
2+i (� (1 + i)

n+2
W�2n� i (1 + i)n+1W�2n�1� (1� i)W1+(1 + i)W0):

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 3.17. For n � 1; Fibonacci numbers have the following properties.

(a):
Pn

k=1(1 + i)
kF�k =

1
2�i (� (2 + i) (1 + i)

n+1
F�n�1 � (1 + i)n+2 F�n�2 + 1 + i):

(b):
Pn

k=1(1 + i)
kF�2k =

1
2+i (�i (1 + i)

n+1
F�2n � (1 + i)n+1 F�2n�1 + 1 + i):

(c):
Pn

k=1(1 + i)
kF�2k+1 =

1
2+i (� (1 + i)

n+2
F�2n � i (1 + i)n+1 F�2n�1 � 1 + i):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 3.18. For n � 1; Lucas numbers have the following properties.

(a):
Pn

k=1(1 + i)
kL�k =

1
2�i (� (2 + i) (1 + i)

n+1
L�n�1 � (1 + i)n+2 L�n�2 � 1 + 3i):

(b):
Pn

k=1(1 + i)
kL�2k =

1
2+i (�i (1 + i)

n+1
L�2n � (1 + i)n+1 L�2n�1 � 3 + i):

(c):
Pn

k=1(1 + i)
kL�2k+1 =

1
2+i (� (1 + i)

n+2
L�2n � i (1 + i)n+1 L�2n�1 + 1 + 3i):

4. Conclusion

Recently, there have been so many studies of the sequences of numbers in the literature and the sequences

of numbers were widely used in many research areas, such as architecture, nature, art, physics and engineer-

ing. In this work, sum identities were proved. The method used in this paper can be used for the other linear

recurrence sequences, too. We have written sum identities in terms of the generalized Fibonacci sequence,

and then we have presented the formulas as special cases the corresponding identity for the Fibonacci, Lucas,

Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. All the listed identities in the corollaries may be

proved by induction, but that method of proof gives no clue about their discovery. We give the proofs to

indicate how these identities, in general, were discovered.

We can summarize the sections as follows:

� In section 1, we present some background about generalized Fibonacci numbers.

� In section 2, summation formulas have been presented for the Fibonacci numbers with positive

subscripts. As special cases, summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,

Jacobsthal-Lucas numbers with positive subscripts have been given.

� In section 3, summation formulas have been presented for the Fibonacci numbers with negative

subscripts. As special cases, summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,

Jacobsthal-Lucas numbers with negative subscripts have been given.

yukse
Highlight



GENERALIZED FIBONACCI NUMBERS: SUM FORMULAS 15

Competing Interests

Author have declared that no competing interests exist.

References
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[7] Gökbaş, H., Köse, H., Some Sum Formulas for Products of Pell and Pell-Lucas Numbers, Int. J. Adv. Appl. Math. and

Mech. 4(4), 1-4, 2017.

[8] Hansen., R.T., General Identities for Linear Fibonacci and Lucas Summations, Fibonacci Quarterly, 16(2), 121-28, 1978.

[9] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, New York, 2001.

[10] Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.

[11] Parpar, T., k�nc¬Mertebeden Rekürans Ba¼g¬nt¬s¬n¬n Özellikleri ve Baz¬Uygulamalar¬, Selçuk Üniversitesi, Fen Bilimleri

Enstitüsü, Yüksek Lisans Tezi, 2011.

[12] Sloane, N.J.A., The on-line encyclopedia of integer sequences. Available: http://oeis.org/

[13] Soykan,Y., On Summing Formulas for Horadam Numbers, Asian Journal of Advanced Research and Reports 8(1): 45-61,

2020, DOI: 10.9734/AJARR/2020/v8i130192.

[14] Soykan, Y., On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in

Research, 20(2), 1-15, 2019.

[15] Soykan, Y., Corrigendum: On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers,

2020. https://www.researchgate.net/publication/337063487_Corrigendum_On_Summing_Formulas

_For_Generalized_Fibonacci_and_Gaussian_Generalized_Fibonacci_Numbers.

[16] Soykan, Y., Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490v1 [math.GM], 2019.

[17] Soykan, Y., Summing Formulas For Generalized Tribonacci Numbers, Universal Journal of Mathematics and Applications,

accepted.

[18] Soykan, Y., Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers, arXiv:1809.07809v1 [math.NT] 20 Sep 2018.

[19] Soykan, Summation Formulas For Generalized Tetranacci Numbers, Asian Journal of Advanced Research and Reports,

7(2), 1-12, 2019. doi.org/10.9734/ajarr/2019/v7i230170.

[20] Soykan, Y., Linear Summing Formulas of Generalized Pentanacci and Gaussian Generalized Pentanacci Numbers, Journal

of Advanced in Mathematics and Computer Science, 33(3), 1-14, 2019.

[21] Soykan, Y., Sum Formulas For Generalized Fifth-Order Linear Recurrence Sequences, Journal of Advances

in Mathematics and Computer Science, 34(5), 1-14, 2019, Article no.JAMCS.53303, ISSN: 2456-9968, DOI:

10.9734/JAMCS/2019/v34i530224.

[22] Soykan, Y., On Summing Formulas of Generalized Hexanacci and Gaussian Generalized Hexanacci Numbers, Asian Re-

search Journal of Mathematics, 14(4), 1-14, 2019, Article no.ARJOM.50727.

[23] Waddill, M. E., The Tetranacci Sequence and Generalizations, Fibonacci Quarterly, 9-20, 1992.

yukse
Highlight


