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Résumé
Dans cet article, nous étudions les résultats de grandes déviations d’une

famille de processus Xε perturbé par un processus rapide ζ dans l’espace de
Besov-Orlicz. Le processus Xε est une solution de l’EDS interprétée au sens
d’Itô : {

dXε
t = b(Xε

t , ζt/ε) dt+
√
εσ(Xε

t ) dWt

X0 = x ∈ Rd

où ζ est un processus indépendant du mouvement brownien W et satisfait
un principe de grandes déviations.

Mots clés :Principe de grandes déviations, principe de moyennisation,
espace de Besov-Orlicz
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Abstract
In this study, we are going to see a large deviation principle associated

with a family process Xε perturbated by a rapid process ζ in the Besov-
Orlicz space. The process Xε is a solution of Itô integral :{

dXε
t = b(Xε

t , ζt/ε) dt+
√
ε σ(Xε

t ) dWt

X0 = x ∈ Rd

in which the condition ζ is independent of the brownian motion W and
obeys a large deviation principle.
Key words :Large deviation, averaging principle, Besov-Orlicz space

1 Introduction
In this study, we consider a diffusion processes Xε d-dimensional solution of

stochastic differential equation (SDE) :

dXε
t = b(Xε

t , ζt/ε) dt+
√
ε σ(Xε

t ) dWt, X0 = x ∈ Rd (1)

where W is a Wiener’s standard process independent of ζ. Our purpose here is to
etablish the asymptotic evaluation of P (Xε

t ∈ A) where A is a Borel set of Besov-
Orlicz space under the assumption that the process Xε

t converges to the solution
X̄t defined by :

dX̄t = b̄(X̄t) dt, X̄0 = 0,

b̄(x) = lim
T→∞

1
T

∫ T

0
b(xs, ζs/ε) ds

The asymptotic evaluation obtained will be the result of a large deviations
from Xε

t compared to X̄t.
The basic work on the subject is the article by Freidlin [10], se also refered to

Ventcel’s book - Freidlin [9]where he gets this evaluation under the assumption :

lim
T→∞

1
T

logE
(
exp(

∫ T

0

〈
α, b(xs, ζs/ε)

〉
) ds

)
= H0(x, α) (2)

exists uniformly in x and differentiable in α.
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The special case ζ ≡ 0 (b(Xε
t , 0) = b(Xε

t )) and σ 6≡ Id was studied by Freidlin
& Wentzell [8] se also refered to Varadhan [27], Azencott [1] and Stroock [26] with
the usual topology uniform, Ben Arous and Ledoux [5] have developed a large de-
viation principle(LDP) in Hölder’s space. Later on, an extension to Besov’s space
was considered in Eddahbi et al [7] and Roynette’s [4]
The particular case σ ≡ 0, ζ 6≡ 0 and b 6≡ Id have been studied by M. BRANCO-
VAN [3]. The case ζ 6≡ 0 was studied by A. GUILLIN [13] in a moderate deviation
situation.

The aim of this paper is to study the large deviation principle (LDP) of the
law of {Xε

t , ε > 0} in the Besov-Orlicz topology. This is the extension of the result
of H. LAPEYRE [17] in a stronger topology.

The paper is organized as follows : In section 2, we introduce some hypotheses
and notations. Section 3 contains some preliminary definitions and general results
which are essential for the proof of the theorem (4.4). Section 4, under the hypo-
theses in section 2, we prove in theorem (4.1) the LDP of Xε

t , solution of (1) when
ζ satisfies a large deviation principle.

2 Hypotheses and Notations

2.1 Hypotheses
In this paper, we assume that the following hypotheses will be verified :

H1. The function σ : Rl×Rd → Rd×Rr is jointly measurable in (x, y) and there
exists a constant C > 0 such that.

|σ(x, y)− σ(x′, y′)| 6 C(|y − y′|+ |x− x′|)
|σ(x, y)| 6 C

H2. The function b : Rl × Rd −→ Rd is jointly measurable in (x, y) and there
exists a constant C > 0 such that.

|b(x, y)− b(x′, y′)| 6 C(|y − y′|+ |x− x′|)
|b(x, y)| 6 C|x− y|

H3. W is a standard Rr-valued Brownian motion
H4. ζt/ε is a process Rl-value independent of brownian motion W and obeys a

large deviation principle with a good rate function I.
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2.2 Notations
2.2.1 Cameron-Martin space

Let H(Rd) be the Cameron-Martin space associated with the Brownian motion
on Rd

H(Rd) =

 f : [0, 1]→ Rd, f is absolutely continuous such that
f(0) = 0 and

∫ 1

0
|ḟs|2 ds < +∞


H(Rd) is a Hilbert Space equipped with the norm

〈f, g〉 =
∫ 1

0
ḟsġs ds

2.2.2 Besov-Orlicz space

Let BMβ ,wα be denote the Besov-Orlicz space of continuous function f : [0, 1]→
Rd such that ‖ f ‖Mβ ,wα<∞. For all α > 0, let us put

‖ f ‖Mβ ,wα,=‖ f ‖Mβ
+ sup

0≤t≤1

wMβ
(f, t)

wα,λ(t)

where wα,λ(t) = tα
(

1 + log 1
t

)λ
,∀α > 0, ‖ f ‖Mβ

= inf
{
τ > 0, 1

τ

[
1+
∫ 1

0
Mβ(τ |f(t)|)dt

]}
et wMβ

(f, t) = sup
0≤h≤t

‖ ∆hf ‖Mβ
with

∆hf(x) = 1[0,1−h](x)(f(x+ h)− f(x)),∀h ∈ [0, 1].

We will use the equivalent of Cieleski, Z. [4]. Let χ1, χj,k, j = 0, 1..., k = 1...2j, suppχj,k =
[(k − 1)/2j, k/2j], be the set of Haar functions over the interval [0, 1], and let
ϕ0(t) = 1, ϕ1(t) = t, ϕj,k(t) =

∫ t
0 χj,k(s)ds be the set of Schauder functions. Let

f : [0, 1] → Rd be a continuous functions , let us note by {An(f), n ≥ 0} the
coefficients of the decomposition of f in the Schauder basis given by

f(t) = A0(f)ϕ0(t) + A1(f)ϕ1(t) +
2j+1∑

n=2j+1

∑
j,k

An(f)ϕj,k(t)

where A0(f) = f(0), A1(f) = f(1)− f(0) and

An(f) = 2
j
2

[(
f
(2k − 1

2j+1

)
− f

(2k − 2
2j+1

))
−
(
f
( 2k

2j+1

)
− f

(2k − 1
2j+1

))]
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Let B0
Mβ ,wα

be the subspace of BMβ ,wα corresponding to the sequence fj,k such
that

B0
Mβ ,wα

=
{
f ∈ C([0, 1],Rd); ‖ f ‖M2,wα<∞, lim

j∧p→∞
2−j(

1
2−α+ 1

p
)p−γ(1+j)−λ ‖ fj,. ‖p= 0

}
where

‖ fj,. ‖p=
( 2j∑
k=1
|fj,k|p

) 1
p and βγ = 1

B0
Mβ ,wα

is a Banach space.

For more details on Besov-Orlicz space we refer to instance [4].

3 Preliminary definitions and results

3.1 Preliminary definitions
Definition 3.1. A mapping I : E −→ [0; +∞] is said to be a rate function if it is
lower semicontinuous (lsc). Furthermore, we will say that I is a good rate function,
if for any a < +∞, the set Γa = {x ∈ E, I(x) ≤ a} is compact.

Unless explicitly stated otherwise, for any subset A of E and any rate function,
we note I(A) = infx∈A I(x).

Definition 3.2. For some mapping I, the family of probabilities {P ε}ε>0 satisfies
a large deviation principle (LDP) if the following holds :

i) (Lower bound.) For every open subset O of E

lim inf
ε−→0

ε logPε(O) ≥ −I(O)

ii) (Upper bound.) For every closed subset F of E

lim sup
ε−→0

ε logPε(F ) ≤ −I(F ).

3.2 Preliminary results
We will use the following characterization theorem.

Theorem 3.3. Let p0 ≥ 1, f belongs to B0
Mβ ,wα

if and only if

max
(
|f0|, |f1|, sup

p≥p0

sup
j≥0

2−j(
1
2−α+ 1

p
)p−γ(1 + j)−λ ‖ fj,. ‖p

)
<∞ (3)
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Theorem 3.4. Let f belongs to B0
Mβ ,wα

if and only if

lim
j∨p→p0

2−j(
1
2−α+ 1

p
)p−γ(1 + j)−λ ‖ fj,. ‖p

)
<∞ (4)

For the proof of this result we refer to [4]

Consider the following norm which is are crucial to prove our results :

‖ f ‖∗∗= sup
0≤s<t≤1

|f(t)− f(s)|
w(t− s)

this is dominated by

‖ f ‖∗= max
(
|f(1)|, sup

j≥0
sup

0≤k ≤2j

|fj,k|√
1 + j

)
.

It is easy to show that there exist D1 > 0 and D2 > 0 such that
‖ f ‖M2,w≤ D1 ‖ f ‖∗∗≤ D2 ‖ f ‖∗.

The following LDP proved by Baldi et al. (1992) extends the classical Schilder
theorem (see Schilder 1996 ; Deuschel and Strook 1989)

Theorem 3.5. Let P ε be the law of
√
εW on B0

M2,wα equipped with the norm
‖‖Mβ ,wα satisfying the LDP with the good rate function I(.) defined by :

I(f) =


1
2

∫ T

0
|ḟ(s)|2 ds if f ∈ H(Rd)

+∞ otherwise

One of the basic tools in large deviation theory is the ’contraction principle’
(see Deuschel and Strook 1989). It enables the new rate function to be computed
after the data have been transformed by a continuous map [18].

Theorem 3.6. Let Qε be a family of probability measure on a Polish space E and
satisfies the LDP with a good rate function λ.
Let F : E → E ′ be countinuous. Denote by Qε = P ε ◦ F−1 the family of image
measure of P ε, then {Qε} satisfies the LDP with a good rate function λ̃ defined by

λ̃(y) = inf
x:f(x)=y

λ(x).

Lemma 3.7. There exist C = Cl such that for all λ > 0 and µ > 0 where
λ > 4lµ > 0 and λ > 2

√
log 2 , we have

P
[
‖ W ‖∗∗≥ λ, ‖ W ‖≤ µ

]
≤ C max

(
1, l
( λ

4lµ
)2

exp
(
− λ2

C
ln
( λ

4lµ
)))

(5)
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Lemma 3.8. (Exponential inequality)
For all u > 2

√
log 2 and for all process K on [0, 1] there exist C = Cl such that

P
[
‖
∫ .

0
Ks dWs ‖∗∗≥ u, ‖ K ‖≤ 1

]
≤ C exp

(
− u2

C

)
. (6)

Now, we give a new formulation for the contraction principle which will be
needed later.

Lemma 3.9. Let (EX , dX), (EY , dY ), (EZ , dZ), (E, d) denote Polish spaces and
(Ω,F, P ) be a probability space.

Suppose that (Xε, ε > 0) is a family of random variables with values in EX
satisfing a LDP with a rate function IX , and (Y ε, ε > 0) a random variable with
values in EY satisfing a LDP with a rate function IY .

Suppose that for each ε > 0, Xε is independent of Y ε then the family of random
variable Z = F (Xε, Y ε) satisfing a LDP with rate function IF (z) defined by

IF (z) = inf
F (x,y)=z

IX(x) + IY (y).

where F : EX × EY → EZ is continuous.

The main purpose of the following section is to build a functional controlling
the large deviation of Xε on B0

M2,wα if we know the large deviation of ζ in B0
M2,wα .

More precisely, we are building for all T > 0 a functional ST satisfying the following
assertions :

i) For each positive α, Kα = {ϕ ∈ B0
M2,wα/ST (ϕ) ≤ α} is a set compact

ii) For every open subset O of B0
M2,wα ,

lim
ε→0

ε logP (Xε(x) ∈ O) ≥ − inf
ϕ∈O

ST (ϕ).

iii) For every closed F of B0
M2,wα ,

lim
ε→0

ε logP (Xε(x) ∈ F ) ≤ − inf
ϕ∈F

ST (ϕ).

where
ST (ϕ) = inf{sϕ(g, f), ψ = Fϕ(g, f)}.

The aim of this study is to establish the large deviation principle of Xε in
B0
M2,wα by using the Azenctott’s method in a general setting. As a reminder for

Azenctott’s method , let (Ei,di), i = 1, 2 be two Polish spaces and X i
ε → Ei,

ε > 0, i = 1, 2 two families of random variables. Assume that {Xε
1 , ε > 0} satisfies

a LDP with rate function I1 : E1 → [0,+∞]. Let Φ : {I1 < ∞} → E2 be a
mapping such that its restriction to the compact sets {I1 ≤ a} is continuous in the
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topology of E1. For any g ∈ E2 we set I(g) = Inf{I1(f),Φ(f) = g}. Suppose that
for R, ρ, a > 0 there exist α and ε0 > 0 such that for f ∈ E1 satisfying I1(f) ≤ a
and ε ≤ ε0 we have

P{d2(Xε
2 ,Φ(f)) ≥ ρ, d1(Xε

1 , f) ≤ α} ≤ exp(−R
ε2 ) (7)

Then the family {X2, ε > 0} satisfies a LDP with rate function I.

4 The main result
Theorem 4.1. Assume that H1, H2. Let Xε is the unique solution of (1).
Then the family {Xε}ε>0 satisfies a LDP in B0

M2,wα with a good rate function de-
fined by

I(f) =


1
2

∫ T

0
|ḣ(s)|2 ds if h ∈ H(Rd), f = S(h)

+∞ otherwise

where S(h) is the unique continous solution of

dSt(h) = b(S(h)(t), ξt/ε) dt+
√
εσ(S(h)(t)) ḣ(t) dt

For the proof of the Theorem (4.1), we will be interested in the behavior of Xε

in a tube around a function ϕ absolutely continuous in
(
C([0, 1],Rd)

)
. In this kind

of tube, we compare Xε to Xϕ
ε solution of dXϕ

ε = b(Xϕ
ε , ξt/ε) dt +

√
εσ(Xϕ

ε ) dWt,
in other words, we will show that for all δ > 0, for all continous function ϕ, there
exist δ1 > 0 such that P (‖ Xε − ϕ ‖≤ δ) ≤ P (‖ Xϕ

ε − ϕ ‖≤ δ1). It is easy to
check it by using the exponential inequality. For absolutely continuous functions
ϕ ∈

(
C([0, 1],Rd)

)
, the mapping Fϕ :

(
C([0, 1],Rd)

)
×B0

M2,wα −→ B0
M2,wα defined

by

Fϕ(g, f) = h if and only if ht = x+ gt + σ(ϕt)ft +
∫ t

0
fsdσ(ϕs)

is continuous and Xε,ϕ is the image of (yε,ϕ,
√
εW ) by Fϕ

where dyε,ϕt = b(yε,ϕt , ξt/ε) dt, yε,ϕ0 = 0. (8)

Let L0(x, α) be the conjugate of the quadratic convex function H0(x, α) ob-
tained from the formula in (2). L0 is lower semicontinuous(lsc), with values in
R+ ∪ {∞}, convex to second argument
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For some couple values (ϕ, ψ) in B([0, T ],Rd), denoted by :S
0(ϕ, ψ) =

∫ T

0
L0(ϕs, ψ̇s) ds if ψ is absolutly continuous

= +∞ otherwiseS
W (ψ) =

∫ T

0

1
2 | ψ̇s |

2 ds if ψ is absolutly continuous

= +∞ otherwise

Proposition 4.2. For absolutely continuous functions ϕ ∈
(
C([0, 1],Rd)

)
then

S0(ϕ, .) is a rate function of yε,ϕ(0) in
(
C([0, 1],Rd)

)
(see[10]).

Proposition 4.3. Assume (H4), the couple of random variables (yε,ϕ(0),
√
εW )

considered a random variable with values in B0
M2,wα satisfying LDP with the follo-

wing rate function Sϕ(g, f) definied by :

Sϕ(g, f) = S0(ϕ, g) + SW (f) (9)

By using the contraction principle, the law of Xϕ
ε satisfies LDP on B0

M2,wα with
the rate function defined by :

Sϕ(ω) = inf{Sϕ(g, f), ω = Fϕ(g, f)}. (10)

Now we aim to establish in Theorem (4.1) a large deviation principle (LDP) for
the family Xε on the Besov-Orlicz Space B0

M2,wα by using the Azenctott’s method
mentioned above to the random variables Xε

1 =
√
εW and Xε

2 = Xε

Theorem 4.4. For any r, α, a > 0, for each x with values in Rd, there exist ρ, r̃, ε0
depending only on r, α, a, x such that for g, f absolutly continuous verifing ‖ ḟ ‖≤ a
and ϕ = By(g, f), |x− y| ≤ r̃, ε ≤ ε0 we have,

P
(
‖ Xε(x)− ϕ ‖M2,wα> α, ‖ yε,ϕ(0)− g ‖< ρ, ‖

√
εW − f ‖< ρ

)
≤ exp(−r

ε
).

where ϕ = Bx(g, f) if and only if ϕ̇t = ġt + σ(ϕ)ḟt, ϕ0 = 0

Proof of Theorem 4.4. Indeed, let W f = W − 1√
ε
f . Girsanov’s theorem

implies that W f is a d-dimensional Wiener process with respect to the probability
P f given by

dP f

dP
= exp

( 1√
ε

∫ 1

0
ḟs dWs −

1
ε

∫ 1

0
|ḟs|2 ds

)
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Let {Y ε
t , 0 ≤ t ≤ 1} be the solution of SDE

Y ε
t = x+

∫ t

0
b(Y ε

s , ζs/ε) ds+
√
ε
∫ t

0
σ(Y ε

s ) dW f
t , P

falmost surely (11)

To simplify the notation, set for any ρ ,α, ε > 0

U f = {‖ Xε(x)− ϕ ‖M2,wα> α, ‖ yε,Φ(0)− g ‖< ρ, ‖
√
εW − f ‖< ρ}

And
V f = exp

{∣∣∣ 1√
ε

∫ 1

0
ḟs dWs

∣∣∣ > λ√
ε

}
.

Then
P (U f ) ≤ P

{
U f ∩

(
V f ≤ exp

(
λ
ε

))}
+ P

{
V f > λ

ε

}
≤ exp

(
λ+a/2
ε

)
P f (U f ) + P

(∣∣∣ 1√
ε

∫ 1
0 ḟs dWs

∣∣∣ ≥ λ
ε

) (12)

where a =‖ h ‖2
H and λ ∈ R

By the classical exponential inequality,

P
(∣∣∣ ∫ 1

0
ḟs dWs

∣∣∣ ≥ λ√
ε

)
≤ 2 exp(− λ2

2aε) ≤ exp(−r
ε

). (13)

Set
Y ε(W f ) = Xε(W f + 1√

ε
f).

Consequently, we obtain :

P f (U f ) = P

(
‖ Y ε(x)− ϕ ‖M2,wα> α, ‖ yε,Φ(0)− g ‖< ρ, ‖

√
εW ‖< ρ

)
,

where Y ε is the solution of SDE in (11), the estimate (12) and (13) complete the
proof of the theorem (4.4).

The aim of proof of theorem 4.4 is an immediate consequence of the next
following propositions.
For any n ∈ N∗ we consider the approximation sequence of the process Y ε defined
by

Y ε,n
t = Y ε

j
2n
, if s ∈ [ j2n ,

j + 1
2n [ for all j = 0, 1, 2, ..., 2n − 1

Proposition 4.5. For all r > 0 and γ > 0 there exist ε0 > 0 and n such that if
0 < ε < ε0, we have :

P f
{
‖ Y ε − Y ε,n ‖≥ γ

}
≤ exp(−r

ε
)
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Proof of Proposition 4.5. For a detailed proof of Proposition 4.5, we refer
to Priouret,P(1982, Lemma 2) [21]

Proposition 4.6. For every γ1 > 0 , ρ > 0 then

P f (U f ) ≤ P f (‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗> γ1, ‖

√
εW ε ‖< ρ).

Proof of Proposition (4.6).

Y ε
t − ϕ = x− y +

∫ t

0
[b(Y ε

s , ξs/ε) + σ(Y ε
s )ḟs] ds+

√
ε
∫ t

0
σ(Y ε

s ) dW ε
s

−
∫ t

0
[b(ϕs, ξs/ε) + σ(ϕs)ḟs] ds+ yε,ϕt − gt

= x− y +
∫ t

0
[b(Y ε

s , ξs/ε)− b(ϕs, ξs/ε)] ds+
∫ t

0
[σ(Y ε

s ) + σ(ϕs)]ḟs ds

+
√
ε
∫ t

0
σ(Y ε

s ) dW ε
s + yε,ϕt − gt

Denote by Iεt =
√
ε
∫ t

0
σ(Y ε

s ) dW ε
s , let δ > 0 be such that ‖Iεt ‖ 6 δ, ‖x− y‖ 6 r̃

‖Y ε
t − ϕ‖ 6 r̃ + C

∫ t

0
|Y ε
s − ϕs| ds+ C

∫ t

0
|Y ε
s − ϕs| |ḟs| ds+ ‖Iεt ‖+ ‖yε,ϕt − gt‖

6 r̃ + C
∫ t

0
|Y ε
s − ϕs|(1 + |ḟs|) ds+ ‖Iεt ‖+ ‖yε,ϕt − gt‖

An application of Gronwall’s lemma implies that,

|Y ε
t − ϕt| ≤ (r̃+ ‖ yε,ϕ − g ‖ + ‖

√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖) exp

(
C(
∫ t

0
(1 + |ḟs| ds))

)
.

On the one hand

‖ Y ε
t − ϕt ‖∗∗ ≤ ‖

√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗ + ‖ yε,ϕ − g ‖

+ ‖
∫ t

0
[b(Y ε

s , ξs/ε) + σ(Y ε
s )fs] ds−

∫ t

0
[b(ϕs, ξs/ε) + σ(ϕs)fs] ds ‖∗∗

≤ ‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗ + ‖yε,ϕ − g‖+ ‖

∫ t

0
[b(Y ε

s , ξs/ε)− b(ϕs, ζs/ε)] ds‖∗∗

+‖
∫ t

0
[σ(Y ε

s )− σ(ϕs)]ḟs ds‖∗∗

≤ ‖Iεt ‖∗∗ + ‖yε,ϕ − g‖+ C
∫ t

0
‖Y ε

s − ϕs‖∗∗(1 + |ḟs|) ds

≤ ‖Iεt ‖∗∗ + ‖yε,ϕ − g‖+ sup
0≤u≤v≤1

C

w(u− v)

∫ v

u
(1 + |ḟs|)|Y ε

s − ϕs| ds

11



On the other hand, knowing the fact that

|Y ε
s − ϕs| ≤ |Y ε

u − ϕu|+ |(Y ε
s − ϕs)− (Y ε

u − ϕu)|

‖Y ε − ϕ‖ ≤ ‖Iεs‖+ ‖yε,ϕ − ϕ‖+ C(1 + |f |)‖Y ε − ϕ‖+ C
∫ t

0
(1 + |ḟs|)‖Y ε − ϕ‖∗∗ ds

≤ 2δ + C(1 + |f |)‖Y ε − ϕ‖+ C
∫ t

0
(1 + |ḟs|) ds

Now, by using Grownall’s lemma, we obtain

‖Y ε − ϕ‖ ≤ 2δ
[
1 + C(1 + |f |)eC(1+|f |)

]
eC(1+|f |)

Thus :
P f (U f ) ≤ P f (‖

√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗> γ1, ‖

√
εW ε ‖< ρ).

Proposition 4.7. For all r > 0, γ1 > 0, there exist ε > 0 and ρ > 0 such that

P f (‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗> γ1, ‖

√
εW ε ‖< ρ) ≤ exp(−r

ε
).

Proof of Proposition (4.7). For α > 0 and for every n ∈ N, we have

A =
{
‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗≥ ρ, ‖

√
εW ‖≤ α

}
⊂ A1 ∪ A2 ∪ A3

where 
A1 =

{
‖
√
ε
∫ .

0
[σ(Y ε

s )− σ(Y ε,n
s )]dW ε

s ‖∗∗≥
ρ

2 , ‖ Y
ε − Y ε,n ‖≤ γ

}
A2 =

{
‖ Y ε − Y ε,n ‖≥ γ

}
A3 =

{
‖
√
ε
∫ .

0
σ(Y ε,n

s ) dWs ‖M2,w≥
ρ

2 , ‖
√
εW ‖≤ α

}
By using the Proposition 4.5, we obtain : for all r > 0 and γ > 0 there exist ε0
and n such that for every 0 < ε < ε0, we have :

P f (A2) ≤ exp(−r
ε

)

It is easy to check that if ‖ Y ε − Y ε,n ‖≤ γ we get ‖
√
ε[σ(Y ε

s ) − σ(Y ε,n
s )] ‖∗∗≤

4εM2γ2.
By using the lemma (3.8),

P f (A1) ≤ C exp
(
− ρ2

Cγ2ε

)

12



It should increase P f (A3). So we have

‖
√
ε
∫ .

0
σ(Y ε,n

s ) dWs ‖M2,w =
√
ε ‖

n∑
j=0

σ(Y ε,n
tj )[W (tj+1 ∧ .)−W (tj ∧ .)] ‖M2,w

≤
√
ε

n∑
j=0
‖ σ(Y ε,n

tj )[W (tj+1 ∧ .)−W (tj ∧ .)] ‖M2,w

≤ 2
√
εKn ‖ W ‖∗∗ .

By using the lemma (3.7), we have :

P f (A3) ≤ C max
(

1,
( ρ

16lMnα

)2)
exp

(
− ρ2

Cε16M2n2 log
( ρ

16lMnα

))

where C is a constant depending on l et M.
Let r > 0 et ρ > 0, we choose then γ > 0 small enough that ρ

Cγ2 > r, and n such
that

P f (A1) ≤ C exp
(
− r

ε

)
and finally

(
ρ2

16M2n2 log
( ρ

16lMnα

))
> Cr in (14). This ends the proof of the

proposition.

4.1 Construction of the rate function
For any (x, α) ∈ (Rd)2, denote byH(x, α) = H0(x, α)+1

2 〈α,Σxα〉 the quadratic
function associated to σ(x) so Σx = σ(x)tσ(x).
Let us suppose that L(x, β) the conjugate quadratic function of H(x, α). L is lower
semicontinuous function with values R+ ∪ {+∞}, converged to β, verified by the
following : for all ϕ, ψ ∈ B([0, T ],Rd), we denote by

S(ϕ, ψ) =


∫ T

0
L(ϕs, ψs) ds, if ψ is an absolutly continuous,

+∞ otherwise.
(14)

Theorem 4.8. For the absolutely continuous Rd−value function ψ, let be S(ϕ, ψ)
the formula defined in (14) and Sϕ(ψ) the rate function defined in (10). Then there
exist a couple of absolutly continuous functions (g, f) verified by ψ = Fϕ(g, f) and
we obtain S(ϕ, ψ) and Sϕ(ψ) coincide.

Proof of theorem 4.8. We denote for (x, α) ∈ (Rd)2, H(x, α) = H0(x, α) +
1
2 〈α,Σxα〉. Qx denotes the quadratic form on Rn associated with the matrix σ(x),
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defined by Qx(v) = 〈v, σ(x)σ(x)∗v〉 = inf |w|2, σ(x)w = v, v ∈ Rn.
We denote for (x, β) ∈ (Rd)2,

L(x, β) = inf{L0(x, γ) +Q∗(δ); b(γ) + δ = β}

where Q∗ is the quadratic form Qx.
Let τ = Bx(g, f) be the solution of τ̇t = b(ġt) + σ(τt)ḟt

S0(ϕ, g) + SW (f) =
∫ T

0
L0(ϕs, ġs) + 1

2 |ḟs|
2 ds

>
∫ T

0
L0(ϕs, ġs) + 1

2 inf{|ġs|2;σ(τs)ġs∇s} ds

>
∫ T

0
L0(ϕs, ġs) + 1

2Q
∗
ϕs(∇s) ds

>
∫ T

0
inf{L0(ϕs, ġs) + 1

2Q
∗
ϕs(∇s); b(ġs) +∇s = τ̇s} ds

>
∫ T

0
L0(ϕs, τ̇s) ds

So,
Sϕ(τs) > S(ϕ, τ).

To check the other inequality, consider Ax[v] defined by

Ax[v] = {w tel que σ(x)w = v, v ∈ Rn}

Consider the Borel set Γ defined by

Γ = {(x, v) ∈ U ×Rn such that Ax[v] is not empty}

For each (x, v) ∈ Γ, we put

K(x, v) = {w ∈ Rn such that |w| = inf |u|;u ∈ Ax[v]}

The mapping K : Γ → {compact in Rk} is a measurable family of non-empty
compact toward so Rockafeller [25]. Subsequently, there exist a Borelian function
χ : Γ→ Rk such that χ(x, v) ∈ K(x, v) for (x, v) ∈ Γ.
For each ϕ, ψ such that S(ϕ, ψ) < +∞ we put Ω as set of (x, β) such that
L(x, β) < +∞ such as

S(ϕ, ψ) =
∫ T

0
L(ϕs, ψs) ds

As
Qx(v) = 〈v, σ(x)σ(x)∗v〉 = ‖σ∗(x)v‖2

14



and
Q∗x(v) = inf{|w|2, w ∈ Ax[v]},

we have
Q∗ϕs(ϕ

′
s − b(ϕs)) = |χ(ϕs, ϕ′s − b(ϕs))|2

S(ϕ, ψ) =
∫ T

0
L(ϕs, ψs) ds =

∫ T

0
inf{L0(ϕs, ġs) + 1

2Q
∗
ϕs(∇s); b(ġs) +∇s = τ̇s} ds.

So there exist a functional f ∈ C0(Rk) such that

S(ϕ, ψ) 6
∫ T

0
inf{L0(ϕs, ġs) + 1

2 |ḟ |
2} ds.

It is fair enough to ask ḟs = |χ(ϕs,∇s)| for almost everything s ∈ [0, T ].

4.2 Regularity of the solution in the Besov-Orlicz space

It is clear that the process
∫ t

0
b(Xε

s , ζs/ε) ds, t ∈ I belongs a.s. to Bϕ,0
M2,w. Then,

it remains to show that the process
∫ t

0
σ(Xε

s ) dWs, t ∈ I satisfies (1.1) and (1.2).
We will prove the result in the case k = d = 1. The extension in the general case
is easily deduced
Let us put

Yt =
∫ t

0
σ(Xε

s ) dWs

We will show that for some p0, we have for any α < 1
2

sup
j>0

sup
p>p0

2−j/p
p1/2(1 + j)α

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

<∞ p.s. (15)

lim
j∨p→p0

2−j/p
p1/2(1 + j)1/2

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

= 0 (16)

To check the relation 15, let λ > 0. Using Chebychev inequality, we can get

P
( 2−j/p
p1/2(1 + j)α

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

> α
)

6
λ−p 2−j√
p
2(1 + j)αp

( 2j+1∑
n=2j+1

|An(Y )|p
)

|An(Y )| is dominated by the terms of :

A :=
∣∣∣∣ ∫ t

0
f 2k−1

2j+1 ,
2k

2j+1
(s) dWs

∣∣∣∣ et B :=
∣∣∣∣ ∫ t

0
f 2k−2

2j+1 ,
2k−1
2j+1

(s) dWs

∣∣∣∣,
15



where
fr,t(s) = 1r<s6tσ(t,Xs) + 1s<r6t[σ(t,Xs)− σ(r,Xs)].

For integers p > 2, using the inequality of Barlow-Yor(1982), for A and B, there
exist a constant Cp appearing in the Burkholder-Davis-Gundy inequality such that

E|An(Y )|p 6 CMppp/2.

Hence,

P
( 2−j/p
p1/2(1 + j)α

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

> α
)

6
λ−p 2−j√
p
2(1 + j)αp

( 2j+1∑
n=2j+1

|An(Y )|p
)

6
(
C

λ

)p 1
(1 + j)αp

Choosing p0 >
1
α

and λ large enough, the series

∑
j>0

∑
p>p0

(
C

λ

)p 1
(1 + j)αp

converges. The point (15) is then a consequence to Borel-Cantelli’s lemma.
To prove 16, we have to notice that as above |An(Y )| is dominated by terms of the
form A et B the exponential inequalities yield that there exist positive constants
K1 et K2 such that for all λ > 0 large enough,

P
( 1√

1 + j
sup
n
|An(Y )| > α

)
6 K1 exp −λ

2(1 + j)
K2M2 .

Therefore, the Borel-Cantelli’s lemma leads to

sup
j>1

1√
1 + j

sup
n
|An(Y )| <∞ p.s.

Or

2−j/p
[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

6 sup
n
|An(Y )|

Thus

sup
j>1

2−j/p
p1/2(1 + j)1/2

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

6
1
p1/2 sup

j>1
sup
n
|An(Y )|.

and that ends the establishment of (16).

16



4.3 Conluding remarks
In the present paper, we have etablished a large deviation principle (LDP)

associated of stochastic differential equation solution of (1) in the Besov-Orlicz
space by using Azenctott’s method. This extends the LDP proved by H.LAPEYRE
[17] to the case of usual topology of uniform convergence. A natural extension of
this work is to replace the standard brownian motion by a Fractional brownian
motion WH for every value of the Hurst parameter H ∈ (0, 1)
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