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ABSTRACT 7 

 8 

The presence of termites in the cocoa plantations and quarries of Côte d'Ivoire poses a 

threat to the producers of this sector. Producer yields are insufficient to cover the strong 

market demand. This situation leads to food insecurity for the population. Knowledge of the 

specific inhibitory molecules of digestive enzymes of termites is necessary to enhance the 

effectiveness of insecticides to optimize crop production. The present study was aimed to 

characterize termite cellulases according to the trophic group. Specifically, the influence of 

chemical agents on the cellulase activities of four humivorous (Cubitermes fungifaber) and 

xylophagous termites (Nasutitermes latifrons, Microcerotermes fuscotibialis and Amitermes 

guineensis) collected in Daloa during the October period was investigated. Thus, the 

cellulase activities were measured by the spectrophotometric method in the absence and in 

the presence of the concentrations of 1 and 5 mM of various chemical agents. The chemical 

agents used behaved differently on cellulase activities. Thus, Cu
2+

, Pb
2+

 and EDTA inhibited 

the cellulase activity of M. fuscotibialis more than 90% at concentrations of 1 and 5 mM, 

respectively, indicating the presence of a metalloprotein. On the other hand, that of the other 

two xylophagous species was slightly inhibited. In addition, the cellulase activity of C. 

Fungifaber was inhibited at the two respective concentrations by Cu
2+

 at about 70%. In 

conclusion, Cu
2+

, pb
2+

 and EDTA can be used in the formulation of some specific 

insecticides against humivorous and xylophagous termites. 
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1. INTRODUCTION 12 

In terrestrial ecosystems, termites have important functions. Thus, numerous works carried 13 

out in Ivory Coast showed the damage caused by these insects on the oil palm [1], the 14 

rubber tree [2], in the mango orchards [3] and the cacao tree [4]. 15 

The strong expansion of termites as pests of cultivated plants is due to their great ability to 16 

degrade the constituents of wood (polysaccharides, lignin, tannins, etc.) thanks to the 17 

digestive enzymes they possess, notably cellulases, which are responsible for the 18 

degradation. cellulose [5]. Studies conducted by Blei et al. On the determination of the 19 

physicochemical properties of cellulases of soldiers of Macrotermes subyalinus [6, 7, 8] and 20 

termite workers according to their trophic group (publication in progress) have shown that 21 

Behave differently Faced with this situation, strengthening the efficacy of insecticides is 22 

therefore necessary to guarantee crop production.  23 

The present study was aimed to characterize termite cellulases according to the trophic 24 

group. More specifically, it will be necessary to determine the chemical agents capable of 25 

inhibiting the cellulase activities of four species of humivorous (Cubitermes fungifaber) and 26 

xylophagous termites (Nasutitermes latifrons, Microcerotermes fuscotibialis and Amitermes 27 

guineensis) collected at Daloa in order to know the inhibitors. 28 

 2. MATERIAL AND METHODS  29 

2.1 Biological material  30 

The biological material consists of the species of Humivorous termites (Cubitermes 31 

fungifaber) and xylophagous (Amitermes guineensis, Nasutitermes latifrons, Microceroterms 32 

fuscotibialis) collected in plantations of cacao, coffee and teak of Daloa (Côte d’Ivoire). 33 

2.2 Methods 34 

2.2.1 Sampling technique 35 



 

 

 Termites were first harvested from dead woods and soil with equipment (such as 36 

daba, machete) and kept in perforated boxes to let air through to keep them alive. 37 

Then, some termites of each species were kept in labeled eppendoffs containing 70% 38 

alcohol to identify them. The identification of different species of termites collected, 39 

was carried out using a binocular loupe. Several manuals have been used to identify 40 

them [9]. And other termite samples were brought to the laboratory to be stored at -20 41 

° C in a freezer for analysis of their enzyme equipment. 42 

2.2.2 Technique for obtaining enzymatic crude extracts 43 

Five hundred and fifty (550) workers of various termite species were washed with distilled 44 

water and dewatered on whatmann paper No.1. These samples were ground in a porcelain 45 

mortar containing 30 ml of NaCl (0.9%, w / v). The ground material obtained was centrifuged 46 

at 13,750 rpm for 30 minutes at a temperature of 4 °C in a 5427R centrifuge. The 47 

supernatant obtained constituted the enzymatic crude extract of the workers (A. guineensis, 48 

C. fungifaber, N. latifrons, M. fuscotibialis). 49 

2.2.3 Measurement of cellulase activity 50 

For the measurement of cellulase activity, the dosage of reducing sugars was carried out by 51 

the Bernfeld method [9] using 3,5-dinitrosalicylic acid (DNS). The reaction medium 52 

consisting of 80 μl of 20 mM acetate buffer pH 5.0, 100 μl of enzymatic solution and 200 μl 53 

of substrate (Carboxymethylcellulose, 0.5%, w / v) was used. This reaction medium was 54 

incubated in a water bath at 37 °C. for 30 minutes. Then, 300 μl of a DNS solution was 55 

added to stop the enzymatic reaction. It was then homogenized and heated on a steam bath 56 

for 5 minutes and then cooled for 10 minutes at room temperature (25 °C). Absorbance was 57 

measured at 540 nm spectrophotometer (Gilson) against a control (containing all products 58 

except the enzyme solution) after adding 2 ml of distilled water. This absorbance was then 59 

converted into micromoles of reducing sugars by means of a calibration line obtained using a 60 

glucose solution (2 mg / ml). 61 

 2.2.4 Influence of chemical agents on enzymatic activities 62 



 

 

The effect of chemical agents on enzyme activity was studied by pre-incubating the 63 

enzymatic crude extract of each termite species for 2 hours at room temperature (25 °C) in 64 

the presence of different chemical agents such as salts of potassium chloride (KCl), sodium 65 

chloride (NaCl), barium chloride (BaCl2), copper sulphate (CuSO4), potassium iodide (KI), 66 

lead acetate (pb( C2H3O2) 2), ethylene diamine tetra acetate (EDTA) and hydroymethylamino 67 

methane (tris), at concentrations of 1mM and 5mM, respectively. Cellulase related activities 68 

were measured under standard conditions. 69 

3. RESULTS AND DISCUSSION 70 

3.1 RESULTS 71 

The results of Figs. 1, 2, 3 and 4 show the sensitivity of the enzymatic activity in the 72 

presence of some metal ions (Na
+
, K

+
, Ba

2+
, Cu

2+
, Pb

2+
, I

-
), EDTA and Tris. For the 1 mM 73 

and 5 mM concentrations, the Na
+
, K

+
, Ba

2+
 and Tris agents have virtually no effect on the 74 

cellulase activity of C. fungifaber, A. guineensis and N. latifrons (Fig. 1, 3 and 4). However, 75 

at the concentration of 5 mM, Tris and Ba
2+

 ion activate the cellulase activities of termites M. 76 

fuscotibialis and N. latifrons respectively at 31 and 11% (Figs. 2 and 4). In addition, Cu
2+

 and 77 

EDTA are present as inhibitors (Figures 1, 2, 3 and 4) at concentrations of 1 and 5 mM, 78 

respectively. However, the cuprous ion (Cu
2+

) inhibits the cellulase activity of M. fuscotibialis 79 

by more than 95% compared to the metal ions used (Fig.2). In addition to the Cu
2+

 ion and 80 

EDTA, the iodide I- ion inhibited the cellulase activities of C. fungifaber, M. fuscotibialis and 81 

N. latifrons (Fig. 1, 2 and 4) while it has no effect on that of A. guineensis (Fig. 3). In 82 

addition, the Pb2 + ion inhibited respectively the cellulase activities of C. fungifaber, M. 83 

fuscotibialis and N. latifrons at 42,70 and 36% at the concentration of 5 mM (Fig. 4). On the 84 

other hand, it activated by 8% the cellulase activity of A. guineensis at concentrations of 1 85 

and 5 mM, respectively (Fig. 3). 86 

  87 



 

 

 88 

. Fig.1: Cellulase relative activity of termite C. fungifaber as a function of the 89 

concentration of chemical agents. 90 
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Fig.2: Relative cellulase activity of termite M. fuscotibialis as a function of the 95 

concentration of the chemical agents. 96 

 97 

 98 

  99 

Fig.3: Cellulase relative activity of termite A. guineensis as a function of the 100 

concentration of chemical agents. 101 
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Fig.4: Cellulase relative activity of N. latifrons termite as a function of the 103 

concentration of chemical agents. 104 

 105 

3.2 DISCUSSION 106 

Sodium and potassium chloride salts influence the change in enzymatic activity, certainly 107 

through interaction with regulatory sites [10]. According to Roy et al., [11]. Na 
+
 and K + ions 108 

have an effect on enzymatic activity due to changes in electrostatic binding that would affect 109 

the tertiary structure of the enzyme. Comparison of enzymatic activity with other studies has 110 

shown that the endoglucanic activity of Aspergillus flavus increases with increasing 111 

concentration of Na
+
 and K

+
 cations [12]. However, this activity was strongly influenced by 112 

the presence of the K
+
 ion with a concentration of 1 mM (85% of the activity). In the case of 113 

this study, the K
+
 and Na

+
 ions have practically no effect on the activity. A study of bacterial 114 

cellobiohydrolases reported a slight improvement in activity with Ba
2+

 [13; 14], and a fungal 115 

cellulase was inhibited by Ba
2+

. For their part, Zhu et al. [15] showed that the Ba
2+

 ion could 116 

lead to a moderate increase in the activity of a Geobacillus esterase and deep with a 117 

concentration of 10 mM. All these results are in the same direction as those reported in this 118 

study with the different species studied because these same effects of barium were found. 119 

This behavior of the Ba
2+

 ion on the cellulase activity could be due to the composition of the 120 

amino acids or to the presence of certain ions in the catalytic site of the enzyme. Inhibition of 121 

cellulase activity by Cu
2+

 ion are consistent with those obtained by several authors. Thus, 122 

Roy et al. [16] have shown in previous studies that Cu
2+

 has significant inhibition on 123 

endoglucanases in Myceliophthora thermophila D-14 (ATCC48104A). Similarly, Deb et al. 124 

[17] show inhibition of enzymatic activities in Bacillus amyloliquefaciens P-001 by a number 125 

of metal ions, including Cu
2+

 copper ion. According to these authors, this divalent ion 126 

behaves as a non-competitive inhibitor of enzymatic activity. Copper does not attach to the 127 

active site as competitive inhibitors. It is rather related to a side group of the enzyme thus 128 

modifying the structure of the enzyme. Also, the way it folds changes the active site [18]. In 129 



 

 

addition, the indirect reduction of enzymatic activity following the interaction of the toxic part 130 

of copper with the microorganisms affects the enzymatic production [19]. Thus, the metals 131 

can bind to the substrate or react with the substrate enzyme complex [20]. Inhibition of lead 132 

is thought to be due to the presence and fusion between lead and thiol groups of the enzyme 133 

[21, 22], since lead increases the activity of other enzymes. Thus, lead varies the 134 

characteristics of these enzymes or stop the activity of their inhibitors [21]. This is the case of 135 

the species A. guineensis whose activity increases in the presence of lead. This is in 136 

agreement with the studies of Seregin & Ivanov [21]. Lead inhibits enzymatic activities as a 137 

whole and achieves an inactivation constant of between 10-5 and 2 x 10-4 M, which means 138 

that 50% of enzyme activities are inhibited in this concentration range [21]. Pb
2+

 is therefore 139 

a potent inhibitor [10]. These results corroborate with the results obtained for C. fungifaber, 140 

N. latifons and M. fucotibialis species. The inhibition of enzymatic activity by EDTA in the 141 

four species studied is explained by the complexation of certain metal ions necessary for the 142 

activation and stabilization of the enzyme [23]. These enzymes are metalloproteinic in 143 

nature. The low activity suggests that the metal ion has a very high affinity for the enzyme or 144 

that the ion is difficult to access in the assay because of steric constraints or amino acid 145 

residues because the inhibitory effect of this compound depends on the relative stability of 146 

the EDTA-ion complex compared to that of the ion-enzyme complex. Previous studies on 147 

endoglucanases, Lee et al. [24] on Bacillus amyloliquefaciens DL-3 showed activity inhibition 148 

with the presence of EDTA. These results are identical to this study. On the other hand, 149 

other studies have shown that at concentrations of 1 and 5 mM, EDTA had no effect on the 150 

amylase activity of Archaea. Therefore, this result deduces that the enzyme is not a 151 

metalloprotein [25]. Which is not consistent with that of this study. 152 

4. CONCLUSION 153 

The divalent ion Cu
2+

 and the EDTA ion chelator are presented as inhibitors of the cellulase 154 

activities of the 4 species studied. Moreover, the PB
2+ ion inhibits the cellulase activity of 155 

Microceroterms fuscotibialis. The Cu
2+ 

and PB
2+ ions as well as the EDTA ion chelator can 156 



 

 

be used in the formulation of certain specific insecticides for strengthening the fight against 157 

humivorous and xylophagous termites. 158 
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