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Abstract 

A rotating beam at varying speed mathematical model is studied. Multiple time scales 

method is applied to the nonlinear system of differential equationsandinvestigated the system 

behavior approximate solution in the instance of resonance case.We studied the system in 

case of applying the delayed control on the displacement and the velocity with Proportional–

derivative (PD) controller.The consistency of the steady state solution in the near-resonance 

case is reviewed and analyzed using the Routh-Huriwitz approach. The factors on the steady 

state solution of the various parameters are recognized and discussed. Simulation effects are 

obtained using MATLAB software package.Differentresponse curves are involved to 

showand compare controllereffects at various system parameters. 

KeywordsNon-linear dynamical system, multiple time scales method, active feedback 

controller, time delay. 

List of symbols 

1 1 1, ,X X X   Position, velocity and Acceleration of the system first mode. 

1 1 1, ,X X X   Position, velocity and Acceleration of the system second mode. 

, 1,2i i   Damping parameters of the system modes 

  System modes natural frequency 

11 21
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, ,
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 Coupling factors between the system modes 

5  Cubic nonlinearity factor of the system modes 

14 24,   Parametric excitation parameters 

,of f  Constant rotating speed and variable rotating speed 

  Excitation frequency 

1 2,k k  Controller feedback gains 

1 2,   Detuning parameters 

  Time delay 

  Small perturbation parameter 

C   denotes the speed of sound 

  the density of the free stream air 

X the velocity of the free stream air 
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the pre-twist angle of a current beam cross section 

o  the pre-twist at the beam tip 

  the poisons ratio 

E Young's modulus 

T  the change in temperature from the reference level oT . 

1 Introduction 

In dynamical and structural structures, disturbances and complex instability are always 

undesired phenomena. These systems face nonlinear vibrations for numerous purposes, such 

as materials' nonlinear properties, geometric nonlinearities, and nonlinear powers of 

excitation.Much time, money and efforts are spent on minimizing these systems' vibrations 

and oscillations for longer life and preventing them from failure or damage. 

Many scholars and scientists have paid attention to and attempted to alleviate this 

topic that affects equipment, industry, and frugality. The high amplitude nonlinear vibration 

activity of a revolving cantilever beam is treated by Thomas et al.[1], with applications for 

turbo machinery and turbo-propeller blades.The effect of rotation speed on the nonlinear 

vibrations of the beam and particularly on the hardening/softening behavior of its 

resonances and the occurrence of high amplitude jump phenomena were investigated. A 

new dynamic model of a rotating flexible beam with a condensed mass positioned in an 

arbitrary location, based on the absolute nodal coordinate formulation, was investigated by 

Zhang et al.[2].They found that both the magnitude and the direction of the condensed mass 

impact the normal frequencies and the mode shapes. Aeroelastic analysis of a spinning wind 

turbine blade was conducted by Rezaei et al.[3] by considering the effects of geometrical 

nonlinearities associated with large blade deflection created during the operation of the 

wind turbine.Through applying the concepts of quasi-steady and unsteady airfoil 

aerodynamics, they proposed an aerodynamic model based on the strip theory. The results 

showed that geometrical nonlinearity, especially for larger structural deformations, had a 

significant impact.The effect of rotation velocity on nonlinear resonances is considered 

in[4], and the multi-scale perturbation approach is used and solved in the von Kármán[5] 

model. In order to simulate nonlinear resonances via a one-mode Galerkin expansion, 

nonlinear beam models such as axial inertia and nonlinear curvature are used.Nonlinear 

resonance curves are also computed, based on a Galerkin discretization with Legendre 

polynomials and a continuity process, with a completely numerical approach (harmonic 

balance coupled to an asymptotic numerical technique).For more detailed and effective 

dynamic analysis of a rotating cantilever beam with elastic deformation defined by partial 

integro-differential equations with non-Cartesian deformation variables, Kim and Chung[6] 

suggested a nonlinear model.They showed that the proposed model not only provided good 

numerical precision and efficiency, but also overcome the constraints expressed by 

Cartesian variables of a previous traditional nonlinear model. The dynamics of a structure 

consisting of a rotating rigid hub and a thin-walled composite beam with an embedded 

active part were introduced by Latalski [7]. 

Based on the device rotation velocity and laminae fiber orientation angle, they studied 

natural mode shapes and electrical field spatial distribution. A Proportional Derivative (PD) 

controller was applied by Kandil, H. El-Gohary[8] to research the effects of time delay on 

its output to decrease the oscillations of a spinning beam at different speeds.Although the 

vibrational modes of the dual system are linearly coupled, the controller is applied to only 



 

 
 

one mode and the other coupled mode tracks it. In the case of the worst resonance cases that 

were verified numerically, they regulated the device. Yao et al.[9, 10] applied the theory 

and isotropic constitutive law of Hamilton in order to infer the beam's governing 

equations.Of supersonic gas flow and high temperature, they studied the dynamics at 

different speeds. Choi et al.[11, 12] showed that an active damping effect can be obtained 

with polyvinylidene fluoride (PVDF) sensors and macrofiber composite (MFC) actuators 

through a negative velocity feedback control algorithm. MFC is a composite form of 

piezoelectric material.Through the required arrangement and distribution scale of the 

sensor/actuator pair, ample vibration suppression efficiency would therefore be obtained. 

 

Joy Mondal, and S. Chatterjee [13]proposed the efficacy of velocity feedback based 

nonlinear resonant controller to control the free and forced self-excited vibration of a 

nonlinear beam. The control force is determined using the nonlinear function of the 

derivative of the filter vector, which is fed through a second-order filter with the velocity 

signal from the sensor. Liang Li et al. [14] has developed a new hierarchical model for 

vibration studies of rotating versatile beams with improved active constrained layer 

damping (EACLD) treatment that is partially shielded. The mass effect of the two added 

edge components is included by modeling the EACLD patch's edge element as an 

analogous spring with attached point mass. The assumed mode approach and Lagrange's 

equations are used to obtain the discrete rigid-flexible coupled dynamic equations of hub-

beam systems with EACLD treatment in the open-loop and closed-loop situations. 

 

 

Boumediène, and Smaoui [15] believed that the beam is to be non-uniform and 

clamped at its left end to the disk's core, where torque control occurs, while a memory 

boundary control resides at the right end. The standard torque control is first proposed, 

followed by the boundary control, which is designed using a special type of memory 

phenomenon as well as the input's dynamic features.L.F. Lyu, W.D. Zhu [16] demonstrated 

a new operational modal analysis (OMA) method for a rotating structure based on a 

rigorous rotating beam vibration theory, an image processing method, and the lifting 

method of data processing. They developed a novel tracking continuously scanning laser 

Doppler vibrometer (TCSLDV) method to monitor and scan a rotating structure, and image 

processing was used to determine the rotating structure's real-time location, enabling the 

TCSLDV system to track a time-varying scan direction on the rotating structure. 

In this article, the PID control with time delay control are applied to the system of 

rotating beam at varying speeds shown in Figure 1a [8,9,10]subjected external and 

parametric forcein order to reduce its oscillations and enhance its efficiency. The 

displacements of the blade cross section are measured by using MFC sensors that are 

distributed over the bottom surface of the blade, as shown in Fig. 1b. The measured signals 

will be sent back to the computer to analyze and compute the appropriate control signal as 

shown in Fig. 1c. Once the control signal is calculated, it is passed through conditioning 

circuit and then be applied to the embedded MFC actuators that are distributed over the top 

of the blade so that they can modify the blade position and reduce its vibration, a control 

loop feedback mechanism illustrated in figure 2 are continuously calculates an error 

value e(t) as the difference between a desired setpoint (SP) and a measured process 

variable (PV) and applies a correction based on proportional, integral, and derivative terms 

(denoted P, I, and D respectively).The multiple time scales perturbation technique (MSPT) 

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative


 

 
 

was applied to obtain an approximate solution and showing the response equation. The 

stability of the system at primary and principle parametric resonance case is investigated 

using both of phase plane and frequency response equation. The numerical solution and the 

effect of the different parameters for the response of the nonlinear dynamic system. 

 

 
 

(a) (b) 

 

(c) 

Figure 1 Rotating compressor blade model, (a) thin-walled pre-twisted blade, (b) sensors and actuators distribution and (c) 

block diagram of control process. 

 
Figure 2 A closed loop system controller. 

2 System model and mathematical analysis 

The equations of motion for the rotating beam shown in figure 1 is introduced by Bekhoucha 

[5] and Yao et al. [9, 10] by  applying the Hamilton’s principle as: 

0
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t

K U W d t    ,                                                                                                        (1) 



 

 
 

whereK denote the kinetic energy, U the strain energy, and W is the virtual work of external 

forces, t denotes time, and   is the variation operator. By calculating the variation in kinetic, 

strain energy, and the virtual work of non-conservative external forces (given in 

Appendix),and substituting Equation (1), then the governing equations of the nonlinear 

vibration system for the rotating beam are as the following: 
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whereu, v are the translations along the x, and y axes, ,x yp p  are the external forces per unit 

axial length in the x and the y direction. The values of ,x yp p and the variables 

( ), 1,2,3,ia z i   are given in Appendix. The dots and primes, respectively, represent partial 

differentiation with respect to t and z, R(X,Y,Z) is the vector function of a point M(X,Y,Z) of 

the deformed thin wall beam, and given by    ( , , ) oR X Y Z X u i Y v j Z k R      . 

Applying Galerkin’s approach [20] on system (2), the horizontal and vertical displacements 

,u v  have been approximated to the modes 1 2,X X  respectively to have the dimensionless 

two degree of freedom non-linear rotating beam system in the form: 
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(3b) 

where all system parameters are defined before. 

Scaling the previous parameters as:

11 11 13 13 14 14 16 16 21 21 22 22 24 24 5 5

1 1 2 2 1 1 2 2
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ˆ ˆ ˆ ˆ, , , .k k k k
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Applying multiple time scales method [17], an asymptotic expansion is sought as: 
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where the time derivative will takes the values: 
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Applying Eqs. (4)-(6) into Eq. (3),then equating same powers of  coefficients to obtain the 

following: 
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It is well known that solutions of (7a), (7b) are  
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Using Taylor expansion, then the value of 1( )A T is given by[21]:

1 1 1 1( ) ( ) ( ) ( )A T A T A T A T           

As approximation, we keep only the first term of this expansion, then,  

0( )

10 1( ) .,
i T

X A T e cc
 




   

where .cc represents the complex conjugates of the preceding terms and A,B are complex 

functions of 1T . 

Now we will study the system worst operating modes due to resonance cases. 

Case 1 Primary resonance: 

The primary resonance occur when the value of   is equal to   so we study the 

behavior of the system near this case i.e. 

1 1
ˆ        ,                                                                           (10) 

Combining Eq.(9) and (10) into (8), we get: 
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Eliminating all secular terms in Eqs. (11), and (12), we obtain: 
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Converting ,A B to the polar form then we have: 
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where , , ( 1, 2)j ja j  are the system amplitude and phase respectively. 

Introducing Eq. (15) in Eqn. (13) and (14)and equating the real and imaginary parts we get: 
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For obtaining the steady state solution for amplitude and phase, putting 1 1 2 2 0a a         

into Eq.(16),the resultant formulas can be solved numerically. To discuss the stability 

behavior of these solutions, linearizing these equations according to Lyapunov first (indirect) 

method [18] to give the following system: 
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where the values of , ( , 1, 2,3,4)m n m n  are included in “Appendix”. Stability of a 

particular fixed point with respect to perturbation proportional to 1exp( )T is determined by 

zeros of characteristic equation of the jacobian determinate J I  which gives:  
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where , , 1: 4m n m n   are given in appendix.According to Routh-Hurwitze criteria [18, 19], 

the necessary and sufficient condition for all characteristic roots of the characteristic 

equation (19) to have negative real parts if and only if the determinate D  and all its principle 

minors are positive, where 
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 , then the stability conditions will be 
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Case 2 Principal parametric resonance  

Assume that the detuning parameter 2 is to be used to depict the principal parametric 

resonance as shown in the following relation: 

2 2
ˆ2 2       

(21) 

Similarly as in case 1 combining Eq. (9) and (21) into (8) andeliminating all secular terms 

from the resulting equations to have: 
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Using Eq. (15) into (22) and equating the real and imaginary parts to obtain the following 

system of ordinary differential equations: 
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Similarly For obtaining the steady state solution for amplitude and phase putting 

1 1 2 2 0a a        into Eq. (23), the resultant formulas can be solved numerically using 

MATLAB software.  

To discuss the stability behavior of these solutions, linearizing these equations 

according to Lyapunov first (indirect) method to give the following system: 
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where the values of , ( , 1, 2,3,4)m n m n  are given in “Appendix”. Numerically, primary 

resonance is the worst resonance case that is taken into account in the discussions.  

3Results and discussion 

In this section,system behaviors of the amplitude and phase at various resonance cases 

are illustrated. A comparison between active and time delay control and the effect of some 

system parameters on its amplitude are shown. 

3.1 time history 

Figure3(a, b) shows the time response for the amplitude 1X , 2X , where figure 3 (c) illustrates 

the system phase plane,Without resonance case and without applying any control system (i.e. 

1 2 0k k  )at the following parameter variables:  

1 2 11 13 14 16

5 22 21 24

65, 100, 0.5, 0.003, 0.82, 0.55, 6.55,

0.9, 0.82, 0.001, 0.5, 7, 2, 0.of f

      

    

          

        
 

   
Fig. 3 (a) the time response for the amplitude

1X . 

Fig. 3 (b) the time response for the  

amplitude
2X . 

Fig. 3 (c)system phase plane 

We can see that the steady state amplitudes are stable in the case of non-resonance operating 

mode. Figure 4clarifies the time history without control and with primary resonance at the 



 

 
 

same previous parameters except that 99  , we observe that the amplitudeshave been 

increased due to the resonance operating point. 

   
Fig. 4 (a) the time response for the  

Amplitude 1X . 

Fig. 4 (b) the time response for the amplitude

2X  

Fig. 4 (c)system phase plane 

Now applying active and time delay control for the system with primary resonance and 

comparing the amplitudes.Figure 5, 6 shows the effect of active and time delay control on 

both 1 2,X X . We observe that the effective of active control is about 105%, and Time delay 

controller is about 125% so the time delay controller is more efficient than active velocity 

feed-back controller for this system. 

 

 
 

Figure 5 (a, b) effect of active control on 
1,

2
X X  respectively at primary resonance case.   

  

Figure 6 (a, b) effect of time delay controlon 
1,

2
X X  respectively at primary resonance case, 0.0015  . 

3.2comparisons with numerical method 

In this sub-section we compared the approximate solution induced by (MTSM) and 

numerical solution using Rung-Kutta Method (RKM). Figure 7, and 8 show good agreement 

between the approximate solution (blue curves) and the numerical results (red curves) in case 

of 0, 0.0015   respectively. 



 

 
 

  
Fig. 7 (a) Time history for the amplitude 1X  using MTSM (blue 

curve) and RKM(red curve). 
Fig. 7 (b) Time history for the amplitude 2X  using RKM 

(blue curve) and MTSM (red curve). 
 

  
Fig. 8 (a) Time history for the amplitude 1X using MTSM 

(blue curve) and RKM(red curve) for 0.0015  . 
Fig. 8 (b) Time history for the amplitude 2X using MTSM 

(blue curve) and RKM(red curve) for 0.0015  . 

 

3.3Frequency response 

Now the following figures show the system amplitude against the detuning parameter

1 with change in specified values for system parameters. In figure 9 the parameters 1 2,a a

with 1 in case of primary resonance case with: 

1 2 11 13 14 16

5 22 21 24

1 2

100, 0.9, 0.7, 0.003, 0.82, 0.55, 6.55,

0.9, 0.82, 0.001, 0.5, 7, 3, 0.0015, 0.001 ,

1000, 0.7, 1, 1.5.

of f

k k

      

     

         

         

 

 

We observe that the amplitude decreases with the increase of the gain 2k , then the delayed 

velocity feedback control is more efficient than the delay on the displacement. Figures10, 

and11 illustrate the effect of 1  on the amplitude with various values of the damping 

parameter 1 2,  as given in these figuresrespectively.The same system parameters values as 

given for figure9 are usedand 2 1k  .We observe in fig. 10that the values of 1 2,a a are 

proportional inversely with the damping parameter 1 but in fig. 11 the value of 1a is 

approximatelyconstant with 2 as it is effect on the velocity 2X of the system second mode 

with two peaks.  

3.4Amplitude vs. certain system parameters 

Let us consider the parameters given in sub-section 3.3 unless otherwise specified.In this 

sub-section weshows the change of amplitude range with varying of the constant and 

variable rotating forces ,of f as shown in figure 12 (a, b) respectively 215, 100k   ,

90  . The steady state amplitude of the main system is a monotonic increasing function 

of the excitation amplitude up to maximum amplitude at saturation. The saturation value may 

lead to an unstable or damaged system due to its large value. Figure 13 (a, b) describe the 



 

 
 

behavior of the amplitude with damping parameters 1 2,   respectivelyat 10  .We 

observe in figure 13 that the suitable range for 2 0.003  , and 1 0.2  , it is useful for the 

system to choose a large value for 1 , but an expensive material should be used, so we use 

suitable materials with appropriate cost and adding a specified controller for reducing the 

amplitude for minimum values in the instance of resonance cases. 

 

  
Fig. 9 (a) System amplitude

1a against detuning  

parameter
1 at

2 0.7,1,1.5k  . 

Fig. 9 (b) System amplitude
2a against detuning  

parameter 1 at
2 0.7,1,1.5k  . 

 

  
Fig. 10 (a) System amplitude

1a against detuning parameter  

1 at
1 0.4, 0.5, 0.7  . 

Fig. 10 (b) System amplitude
2a against detuning parameter 

1 at
1 0.4, 0.5, 0.7  . 

 

  
Fig. 11 (a) System amplitude

1a against detuning parameter 

1 at
2 0.4, 0.5, 0.6,0.9  . 

Fig. 11 (b) System amplitude
2a against detuning parameter 

1 at
2 0.4, 0.5, 0.6,0.9  . 



 

 
 

  
Fig. 12 (a) System amplitude against constant  

rotating forces fo  

Fig. 12 (b) System amplitude against variable  

rotating forces f  

 

  
Fig. 13 (a) System amplitude against damping parameters

1  Fig. 13 (b) System amplitude against damping parameters
2  

 

4Conclusions 

In this research, a system of nonlinear ordinary differential equations that describing a 

rotating beam is analyzed approximately via multiple time scales method. We studied the 

effect of existence and nonexistence of the time delay on the velocity and the displacement 

feedback the system amplitude.The study arein case of the worst resonance cases that are 

primary and principal parametric resonance. We concluded that the time delay controller is 

more efficient than active feed-back controller on the velocity for this system, as the 

effective of active control is about 105%, and Time delay controller is about 125%, so the 

Time delay control is recommended to use in this system. The Lyapunov first method and 

Routh–Hurwiz criteria are adopted to achieve the stability analysis.In addition, approximate 

solution induced by (MSPT) is compared with numerical approximation solution using 

Rung-Kutta of fourth order method. The distinction offered a good agreement between 

approximately and numerical approaches. The effects of system parameters on the amplitude 

are discussed for choosing appropriate values for these parameters that attaining the system 

stability. 
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