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Abstract

The Earth is exposed annually to the fall of some meteorites and probably other

celestial bodies which cause a potential danger to vital areas in several countries.

Consequently, the accurate calculation of the falling time of such bodies is useful

in order to take the necessary procedures for protecting these areas. In this paper,

Newton’s law of general gravitation is applied to analyze the vertical motion in the

Earth’s gravitational field. The falling time is obtained in exact form. The results

are applied on several objects in real life.
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1 Introduction

Several centuries ago, the British scientist Isaac Newton developed the laws of regular

motion with a constant acceleration in a straight line. Such laws are often studied in

the early years of the university stage to investigate the vertical motion of objects close

enough to the surface of the earth, that is, at small heights compared to the radius of

the Earth. Newton also discovered his important law of general gravitation in classical

mechanics, which is usually used to analyze the motion of an object in the gravitational
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field of another object. The latter is of course more general than the aforementioned

vertical motion laws. The question that we want to answer in the present study is that;

what is the difference between the falling time of an object in view of both Newton’s laws

of vertical motion and Newton’s law of general gravitation? In the present study, we will

determine the amount of error resulting from the applications of Newton’s laws of vertical

motion. Such error will be expressed in terms of the height from which the object fall.

The results will be applied on several objects in real life.

Perhaps the first attempt to study the falling objects in the Earth’s gravitational

field was the experiment of the pound and the quill made by the great scientist Isaac

Newton several centuries ago. Newton concluded from his experiment that the falling

time of two bodies from the same height does not depend on their masses and that

they will take the same time to reach the ground in the absence of air resistance, where

Newton has conducted his famous experiment in a vacuum tube of air. Newton made

great contributions and discovered many scientific laws in classical mechanics [1], not

only, he also developed other important theories and laws in various branches of physics

and astronomy. Some of the most famous laws developed by Newton were the three

laws of motion in a straight line with a constant/regular acceleration. These laws are

usually taught in the early years for the students in physics and mathematics departments.

Replacing the constant acceleration with the acceleration due to the gravity of Earth leads

to Newton’s laws of vertical motion which can be used to study the vertical motion of

objects near to the Earth’s surface.

The question arises here is that; is it possible to apply Newton’s laws of vertical

motion on objects falling from hundreds of kilometers above the ground? On the other

hand, Newton derived his famous law of gravitation through which can be used to study

the vertical motion of objects far away from the Earth’s surface [2]. Hence, Newton’s law

of gravitation could be applied in a much greater range than Newton’s laws of vertical

motion. The questions that we try to answer in the current study are; what is the

difference between the results that can be obtained in light of both Newton’s laws of

vertical motion and Newton’s law of gravitation? Is the falling time derived from both

types of laws will be the same when an object falls from a prescribed height above the

ground? In the present research, we will be able to determine the amount of error resulting

from the applications of Newton’s laws of vertical motion in estimating the falling time

of objects as a function of the height.
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2 Formulation of the problem

The equation of motion of a particle in a general resistant medium in view of Newton’s

law of gravitation is given by [2]

r̈(t) = −GM
r2

+ kvn, (1)

where, M is the mass of Earth, G is Newton’s constant of general gravitation, r is the

distance of the particle from the center of Earth, v(t) = ṙ(t) is the vertical instantaneous

velocity of the particle, k is the constant of resistance, and n is a positive natural number.

Assuming that R is the radius of Earth, the initial conditions (ICs) are given as

ṙ(0) = 0, r(0) = h+R, (2)

where h is the height of the particle above the Earth’s surface at initial time. The proposed

method depends basically on applying some basic concepts in calculus [3,4] for the special

case k = 0. In case k 6= 0, n ≥ 1, the Adomian decomposition method (ADM) [5-14]

may be applied to solve the nonlinear system (1-2) which is a complex nonlinear initial

value problem. The objectives of this paper are focused on estimating the falling time

and comparing our results with the corresponding ones obtained from Newton’s laws of

vertical motion. Then, applying the results on several bodies in our real life.

3 The exact solution

In this section, the exact solution of the system (1-2) will be obtained at the special case

k = 0. In this case, Eq. (1) becomes

r̈(t) = −GM
r2

. (3)

Multiplying both sides by ṙ, we have

ṙr̈(t) = −GMr−2ṙ. (4)

Integrating once, yields
1

2
(ṙ(t))2 =

GM

r
+ c1, (5)

where c1 is a constant of integration. Applying the ICs (2), we obtain

c1 = − GM

h+R
, (6)
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and Eq. (5) becomes

(ṙ(t))2 = 2GM

(
1

r
− 1

h+R

)
, (7)

or

ṙ(t) = ±

√
2GM

(
1

r
− 1

h+R

)
(8)

Since r(t) is a decreasing function in time, we choose the negative sign in (8) and this

yields

dr

dt
= −

√
2GM

(
1

r
− 1

h+R

)
. (9)

Making use of the new variable u = 1
r
, we have

dr

dt
= − 1

u2
du

dt
. (10)

Inserting (10) into (9) gives

− 1

u2
du

dt
= −

√
2GM (u− α), (11)

where

α =
1

h+R
. (12)

Using separation of variables approach, we can write (11) as

du

u2
√
u− α

=
√

2GM dt. (13)

Integrating once again, yields∫
du

u2
√
u− α

=
√

2GM t+ c2, (14)

where c2 is also a constant of integration. Implementing the trigonometric substitution

method, we have

u = α (secφ)2 , du = 2α (secφ)2 tanφdφ. (15)

Substituting (15) into (14) and simplifying leads to

2√
α3

∫
(cosφ)2dφ =

√
2GM t+ c2, (16)

i.e.,
1√
α3

(φ+ sinφ cosφ) =
√

2GM t+ c2. (17)
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From (15), we have

φ = sec−1

(√
u

α

)
, cosφ =

√
α

u
, sinφ =

√
1− α

u
. (18)

Hence,
1√
α3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=
√

2GM t+ c2, (19)

or √
(h+R)3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=
√

2GM t+ c2, (20)

From the ICs (2), we have

u(0) =
1

r(0)
=

1

h+R
= α, (21)

Applying this condition on Eq. (20), we obtain

c2 =
√

(h+R)3 sec−1(1) = 0, (22)

and hence, √
(h+R)3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=
√

2GM t. (23)

The product GM is also given by

GM = gR2, (24)

where R is the radius of the Earth and g is the acceleration due to gravity of the Earth.

Accordingly, the equation (22) gives the falling time as

t =

√
(h+R)3

2gR2

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
, (25)

or in terms of r and h as

t =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

r

)
+

√
r

h+R

√
1− r

h+R

]
. (26)

The object reaches the Earth’s surface when r = R and accordingly the exact falling time

TExact is expressed as

TExact =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

R

)
+

√
R

h+R

√
1− R

h+R

]
. (27)
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Newton’s laws of vertical motion for a falling object are well-Known as

v = v0 + gt, v0 = ṙ(0) = 0, (28)

h = v0t+
1

2
gt2, (29)

v2 = v20 + 2gh. (30)

From Eq. (30), the approximate falling time TApprox is expressed as

TApprox =

√
2h

g
. (31)

Therefore, the error Error(t) in estimating the falling time is given by

Error(t) = TExact − TApprox, (32)

and in terms of the height h we have

Error(t) =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

R

)
+

√
R

h+R

√
1− R

h+R

]
−

√
2h

g
. (33)

4 Applications

In this section, we give some applications of the exact formula of the falling time for various

objects in real life. The following values of the radius of Earth and the acceleration due

to gravity of Earth are implemented [15] to conduct the results of this section:

R|at the equator = 6378.137× 103 [meter], R|at the poles = 6356.752× 103 [meter],

(34)

g = 9.7803253359

(
1 + 0.001931850400 sin2 λ√
1− 0.006694384442 sin2 λ

)
[meter/s2],

where λ denotes the latitude and λ ∈ [0, π]. At the equator, we have g ≈ 9.78[meter/s2]

(λ = 0) while at the poles of Earth we find that g ≈ 9.83[meter/s2] (λ = π/2). The

variation of the acceleration due to gravity versus the latitude λ is depicted in Fig. 1.

4.1 Aeroplane

It is well known in the fields of aviation and air transport that the aircrafts, which are

used in internal or international flights, fly at altitudes ranging between 29000 and 35000
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Figure 1: Variation of the acceleration due to gravity of Earth g versus the latitude λ.

feet, equivalent to 9 to 11 kilometers above the Earth’s surface. Perhaps the reason for

flying at this altitude is that such a layer of the Earth’s atmosphere is more stable than

other layers and air resistance is lower the required thrust is the lowest and the same

for fuel consumption. We are now facing the question that if all of the plane’s engines

are suddenly stopped, how long will the plane take to reach the ground? To answer that

question, let us consider that the average altitude of aircraft is 10 kilometers above the

Earth’s surface, and by substituting for h = 10 [Km] or h = 10000 [m] in Eq. (27)

we obtain TExact = 45.2806 ≈ 45 seconds, which means that the aircraft takes about

45 seconds to reach the ground in the absence of air resistance. Such result coincides

with the time when the atomic bomb fell on the cities of Hiroshima and Nagasaki in

Japan during the second world war. Applying the approximate formula (31), we have

TApprox = 45.2216 ≈ 45 seconds. The error (32) in this case is too small and given as

Error = TExact− TApprox = 45.2806− 45.2216 = 0.0590 seconds This is because the height

h = 10 [Km] is too small when compared with the radius of the Earth.

4.2 Geostationary Satellites

The geostationary satellites are at altitude h = 36000 [Km] above the Earth’s surface and

they are in stationary orbits around the Earth. Assume that the motion of such satellites

is suddenly stopped, regardless of how this happens, then the expected exact time taken

by these satellites to reach the Earth’s surface is calculated from (27) as TExact = 14962.8

seconds. Converting this value into hours and minutes gives TExact = 4 hours and 9

minutes.
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4.3 The Moon around Earth

The Moon is at a distance 384400 Km from the center of the Earth, consequently, the

corresponding height is h = 384400 − 6378.137 = 378021.863 [Km]. Substituting h =

378021.863 [Km] in (27), we get TExact = 419295.86 seconds. Converting this value into

days and hours gives TExact = 4 days and 20 hours. This result gives the falling time

of the Moon on the Earth (assuming that the Moon is suddenly stopped, whatever the

reason) which coincides with Ref. [16] (Problem 5.107, page 141).

4.4 The Earth around Sun

The Earth is at a distance 150× 106 Km from the center of the Sun. In order to estimate

the falling time of the Earth on the Sun (assuming that the Earth is suddenly stopped,

whatever the reason), we modify Eq. (27) as

TExact =

√
(h+Rs)3

2gsR2
s

[
sec−1

(√
h+Rs

Rs

)
+

√
Rs

h+Rs

√
1− Rs

h+Rs

]
, (35)

where Rs is the radius of the Sun (Rs = 6.96 × 105 Km) and gs is the acceleration of

gravity due to the Sun (gs = 273 [meter/s2]). In this case, the height of Earth above the

Sun equals h = 150×106−6.96×105 = 149.304×106 [Km]. Accordingly, Eq. (35) leads to

TExact = 5.61039× 106 seconds. Converting this value into days gives TExact = 64.9 ≈ 65

days. Also, this result agrees with the obtained result in Ref. [16] (Problem 5.108, page

141).

5 Discussion of errors

Using the error equation (33), we present in Tables (1-3) some numerical results, from

which it becomes clear that the amount of error in time is about 21 seconds in the first

500 kilometers above the surface of the earth, as in Table 1.

Table 1: Calculated errors for h = 100, 200, 300, 400, 500 Km.
h [Km] 100 200 300 400 500
Error(h)[S] 1.86753 5.27977 9.69521 14.9202 20.8426

While the error in time is about 59 seconds (approximately one minute), in the first

1000 km, as shown in Table 2.

Table 2: Calculated errors for h = 600, 700, 800, 900, 1000 Km.
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Figure 2: Graph of the estimated error in the falling time, given by Eq. (33), versus the
height h in the range h ∈ [100, 1000] [km].

h[Km] 600 700 800 900 1000
Error(h)[S] 27.3867 34.4968 42.1298 50.2509 58.8314

It is clear from Table 3 that the amount of error in time is approximately 853 seconds,

that is, 14 minutes if the altitude reaches six thousand kilometers.

Table 3: Calculated errors for h = 2000, 3000, 4000, 5000, 6000 Km.
h[Km] 2000 3000 4000 5000 6000
Error(h)[S] 165.802 303.663 466.272 650.11 852.817

In addition, it can be indicated from Eq. (33) that the error in time is approximately

12249.5 seconds, i.e. about three hours and 24 minuets if the body fell from a height

of 36,000 km above the surface of the Earth, which is the same height as the motion

of geosynchronous satellites. In light of these results, it becomes clear to us that it is

preferable not to apply Newton’s laws of vertical motion at altitudes higher than thousand

kilometer above the surface of the Earth. This is because the amount of error (in the

estimated time of falling objects) becomes minutes and increases to hours with increasing

the height above the surface of the Earth. This conclusion can be confirmed through Fig.

2, Fig. 3, and Fig. 4.

6 Conclusion

In this paper, Newton’s law of general gravitation was applied to analyze the vertical

motion of an object towards the Earth. Explicit formula for the falling time was obtained
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Figure 3: Graph of the estimated error in the falling time, given by Eq. (33), versus the
height h in the range h ∈ [1000, 6000] [km].
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Figure 4: Graph of the estimated error in the falling time, given by Eq. (33), versus the
height h in the range h ∈ [6000, 30000] [km].
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and applied on some objects in real life. The results revealed that the time taken by

a plane to reach the ground was about 45 seconds in the absence of air resistance (if

all of the plane’s engines are suddenly stopped). The geostationary satellites (altitude

h = 36000 [Km] above the Earth’s surface) reach the Earth’s surface in 4 hours and 9

minutes under the assumption that the motion of such satellites is suddenly stopped and

regardless of how this happens. Under such assumption, the Moon takes about 4 days

and 20 hours to fall on the Earth. Furthermore, the time taken by the Earth to reach

the Sun’s surface was about 65 days. The last two results were in full agreement with the

calculations made in Ref. [16] (Problems 5.107 and 5.108, page 141). Finally, the error

resulting from applying Newton’s laws of vertical motion was obtained in terms of the

height. In view of the obtained results, it was recommended to avoid the use of Newton’s

laws of vertical motion at altitudes higher than thousand kilometer above the Earth. This

is because the error in the estimated falling time becomes minutes and increases to hours

if the height is greater than thousand kilometer.
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