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A Review of Flow-Capacitated Networks: 

 Algorithms, Techniques, and Applications 
 

 

 

Abstract 
This paper presents a review of flow network concepts, including definition of some graph-theoretic 

basics and a discussion of network flow properties. It also provides an overview of some crucial 

algorithms used to solve the maximum-flow problem such as the Ford and Fulkerson 

algorithm (FFA), supplemented with alternative solutions, together with the essential terminology for 

this algorithm. Moreover, this paper explains the max-flow min-cut theorem in detail, analyzes the 

concepts behind it, and provides some examples and their solutions to demonstrate this theorem. As a 

bonus, it expounds the reduction and transformation techniques used in a capacitated network. In 

addition, this paper reviews one of the popular techniques for analyzing capacitated networks, which 

is the “decomposition technique”. This technique is centered on conditioning a complicated network 

on the possible states of a keystone element    or on the possible combinations of states of many 

keystone elements. Some applications of capacitated network problems are addressed based on each 

type of problem being discussed. 
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1. Introduction 

 
A capacitated network (also called a flow network) in graph theory is a directed graph where each 

directed edge has a specified capacity, which is the maximum value of a specific entity, commodity, 

or ‘through’ quantity that can flow through the edge. For example, we can state that the capacity of a 

wire is 30 amperes if the maximum electric current that can flow through the wire (that the wire can 

withstand) is 30 amperes. Moreover, each edge in the capacitated network supports a flow that moves 

through the edges without breaching capacity constraints from the source node to the sink node. 

Notably, a directed graph in Operations Research (OR) is called a network, which has nodes named 

vertices. The arcs connecting these vertices are called edges or branches.  Understandably, a flow 

should adhere to the constraint that the inflow should be equal to the outflow at any vertex.  The 

source and sink nodes, which have only outgoing flow and incoming flow, respectively, are not 

restricted by this constraint. This constraint, called “the law of flow conservation”, is similar to 

Kirchhoff’s Current Law when an electric current is the subject of the flow. Capacitated networks 

have many applications when modelling real-world problems. For instance, the commodity flowing in 

a capacitated network might be the traffic in a computer network, the liquid flowing through pipes, the 

current in an electric circuit, the information passing through communication networks, or anything 

similar that moves through a network of vertices. 

The maximum-flow problem seeks a solution, where we can compute the highest flow from a source 

to a sink within the maximum capacity limits of the network branches. Notably, an effective algorithm 

like that of Ford-Fulkerson can solve this problem easily since it is proven correct and tested for 

various capacitated networks. Moreover, we can adapt certain techniques that apply particular 

maximum-flow algorithms (such as those based on the reduction and transformation rules or the 

decomposition technique) so as to cope (at least partially) with the increase in complexity for larger 

networks.  

The rest of this paper is arranged as follows. A review of flow network concepts is presented in 

Section 2, which details network properties, and the problem definition, while viewing the maximum 

flow aspects. Section 2 also provides an overview of some crucial algorithms used to solve the 

maximum-flow problem, in addition to some useful notation. Section 3 presents the Ford and 

Fulkerson method or the Ford and Fulkerson algorithm (FFA), supplemented with alternative 
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solutions, together with the essential terminology for this algorithm. Additional examples to explain 

the algorithm are also featured in this section. Section 4 explains the max-flow min-cut theorem in 

detail, analyzes the concepts behind it, and provides some examples and their solutions to demonstrate 

this theorem. Section 5 explains the reduction and transformation techniques used in a capacitated 

network. Moreover, Section 6 extends this work by presenting one of the popular techniques for 

analyzing capacitated networks, which is the “decomposition technique”. This technique is centered 

on conditioning a complicated network on the possible states of a keystone element    or on the 

possible combinations of states of many keystone elements. Subsequently, Section 7 highlights some 

applications of the flow network problem. Finally, Section 8 concludes the paper. 

 

2. Flow-Capacitated Networks: 

 
The section introduces flow networks, including definition of some graph-theoretic basics, a 

discussion of network flow properties, and a detailed definition of the maximum-flow problem.  

Besides, some useful notation is clarified in this section. 

 

2.1. Definition of Flow Networks and Flows  
 

A flow network [1, 2, 3, 63]          is a directed graph  where   is a set of vertices and   is a set 

of directed edges, where each edge        is characterized by the ordered set of the two nodes   and   

it connects. Without loss of generality we assume that        denotes at most one edge extending 

between the two nodes   and  , because if there are several such edges then they can be combined 

into one. Each edge           has a nonnegative function          , called the capacity function. 

If            , then we can add        to    provided we set           Self-loops (edges 

connecting a vertex to itself) are disallowed in the graph, which means that the graph is a simple one. 

If we isolate two specific vertices, a source   and a sink  , then the four-tuple              is called 

a flow network [1, 2, 3].  Now presume that each node falls on some path when the network is 

traversed from the source node to the sink node. This means that the flow network involves at least a 

path        for each node    .  Accordingly, the network is assumed to be connected and 

because each node other than the source has at least one edge incident on it           ; as can be 

seen in the examples of the flow networks in Figures 2 and 3. 

Flows  

There are many ideas for a flow function that might be used to describe the behavior of a flow 

network [2, 3, 5]. In fact, the net flow between any two vertices is conveniently modeled by such a 

flow function. One of the important examples of a useful flow function is derived via what is called a 

pseudo-flow algorithm, which is used to resolve the maximum flow and minimum cut problems [2, 3, 

5]. 

A pseudo-flow in   [59-61] satisfies the properties stated below for all vertices   and    with the real-

valued function           :  

 Capacity constraint: For all        we require                  This constraint 

indicates that flow through a specific branch (extending between nodes   and  ) should not 

exceed the flow limits for this branch and must be non-negative. 

 Skew symmetry: This is the only requirement that involves encoding the total units of flow 

between each pair of vertices   and  . This is due to the fact that  f (u, v) = −f (v, u), i.e., the 

net flow from node   to node   is the opposite of the total flow from node   to node  . 

It is necessary to verify the net flow into a specific vertex   for a particular pseudo-flow   in a flow 

graph.  An additional function            is needed to represent the net flow entering node  , and 

hence it is stated by                       . Accordingly, the vertex u is considered active if 

         , deficient if         or conservative if            

The aforementioned explanations naturally bring us to mention two crucial definitions related to that 

of a pseudo-flow: 

 

A pre-flow is a pseudo-flow in which all             satisfies the extra property: 
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 Non-deficient flow: The total inflow in any vertex   other than the source is non-negative. 

The exception of the source is necessary, since, by definition, it is a node that "produces" 

flow. Mathematically speaking, a non-deficient flow means:            for all             

For all                , a feasible flow, or only a flow is the pseudo-flow that fulfills the extra 

property. 

 Flow conservation [2, 3, 63]: For all            we require  

               

   

  

   

 

The conservation property states that, for a node other than the source or the sink, the total outflow 

from a vertex should be equivalent to the total inflow into that vertex.  Roughly speaking, “what flows 

in must come out” for a node other than the source node or the sink node.  Whenever           
nothing flows from   to  , and           
The flow from vertex   to   is the non-negative quantity       , where the value     of a flow   is 

defined as  

                    

      

 

Notably, this is the net outflow from the source node minus the inflow towards it, where the       
notation indicates flow value and not cardinality or absolute value. Usually, a flow network cannot 

have any edges entering the source, and the flow entering the source, defined by                 

Nevertheless, it is essential to introduce the inflow concept at the source at this stage (though we set it 

identically to zero later) since this conforms to our brief introduction to residual networks, which 

comes later in the paper.    
 

2.2. Intuitive Analysis of Flow Networks 

 
The method of transferring the flow units between vertices is a critical issue in the analysis of a flow 

network. Notably, distinguishing various edges between two vertices is not warranted here. We recall 

that we assumed, without loss of generality, that        denotes at most one edge extending between 

the two nodes   and  . We now explain this further. 

 For any pair of vertices   and  , let us tentatively assume that we have two edges in parallel 

from node   to node   whose branch capacities are 4 and 6 units, respectively. Instead of 

using these two edges, we can replace them with an equivalent single edge between 

  and   with a capacity of 10 units. It is not necessary to know how these two edges might 

share the actual flow that can be transferred, but the important thing is to know that we can, 

as a maximum, transfer 10 units from   to  . 

 Again, given a pair of different vertices   and  , assume we have a flow of 7 units from the 

direction   to  , and an additional opposite flow of 2 units from the direction   to  . These 

correspond to 5 units of net flow from   to  , which equates to a negative 5-unit flow in the 

opposite direction   to  . Therefore, the sign is used to indicate the actual direction measured 

with respect to the   to   direction as a reference direction. 

Thus, the capacity function              (which avoids having several edges originating and 

terminating at the same set of two vertices) is adequate for successful flow analysis. Correspondingly, 

imposing the skew symmetry property on flow functions is justified since there is a guarantee that the 

flow between two nodes is uniquely coded by a distinct non-negative numerical value (to show 

magnitude), together with a sign (for direction designation w.r.t. a reference direction). Once you 

know the flow between   and  , then through skew symmetry you have known the flow 

between   and  . Usually, the immediate impact of network solutions are not intuitive, but they 

become more realistic during the actual analysis of the flow network. The capacity constraint ensures 

that a flow on any edge in the flow graph will not exceed the capacity of that edge. 

2.3. Networks with Multiple Sources and Sinks 
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Many sources and many sinks can exist in any maximum flow problem, which rules out the necessity 

of existence of only one source and one sink [2]. For example, the telecommunication wireless 

network may actually have multiple base stations             , each servicing particular locations in 

a certain best way and numerous users              with varying expectations of the (network traffic) 

communication rates, as shown in Figure 1(a). 

It is possible to replace multiple flows involving multiple sources and sinks by a single basic 

maximum flow problem. Figure 1 shows the conversion of multiple sinks and sources in part (a) to an 

ordinary single sink and an ordinary single source, respectively, in part (b). To achieve this purpose, 

we added a super-source   to the flow-graph. We  also added a directed arc        whose branch 

capacity is           that connects the super-source   with each of the initial multiple sources    
for each              Moreover, we added a new super-sink   too to the flow graph, together with 

a directed arc        with capacity           that connects each of the initial multiple sinks    for 

each           to the super-sink  . Actually, there are noticeable similarities between Fig. 1(a) and 

Fig. 1(b). The only source   releases the sufficient flow required to satisfy the multiple sources    , 
while the one sink   consumes the flow delivered to the several sinks   . We observe that the infinite 

value for the capacities         and         might not be necessary as it suffices to secure only the 

following finite values                         
, and                          

. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                (b) 

 
Figure 1. Conversion of a multiple-source, multiple-sink maximum-flow problem for the 

telecommunication wireless network into a problem with a single source and a single sink. The 

figure (a) above shows how to transform a multiple-source, multiple-sink maximum-solution 

problem for the telecommunication wireless network into a single-source and a single-sink 

problem. It has a five-source                     flow network with three sinks   
             Diagram (b) shows the corresponding network flow for a single-source and a single-

sink. The significant changes made in going from (a) to (b) include the addition of a super-

source   and an edge with an unlimited (or sufficient) capacity from   to each of the multiple 

sources   the addition of a super-sink   and an edge with an unlimited (or sufficient) capacity 

from each of the multiple sinks to    

 

2.2.4. Example  
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Figure 2 shows the source depicted as  , the sink identified as   , and four additional vertices for a 

flow network. The flow and capacity are indicated via an ordinary-fraction  
 

 
  notation, where   and   

denote the flow and capacity, respectively. The way this network conserves flow, upholds both 

capacity and skew symmetry is evident in Figure 2. For instance, the total amount of flow 

from   to   is 10, which can be easily seen from the fact that the total outgoing flow from   is 10, 

which is also the incoming flow to  . Notably, every flow is accounted for in all the vertices, since the 

flowing commodity is neither generated nor consumed at any of these vertices. 

Figure 3 shows the residual network for the given flow network. Notice how  a positive residual 

capacity (   ) appears on some branches where the original capacity is zero, for instance, for the 

branch      . This flow is not a maximum flow. There is available capacity along the paths 

                                          which are labelled as augmenting paths. The residual 

capacity of the first path is  

                                                                 

              
Notice that as long as there exists some path with a positive residual capacity, the flow will not be 

maximum. The residual capacity for some path is the minimum residual capacity of all edges in that 

path. 

Finding the maximum flow [64] is the simplest and most popular problem using flow networks. The 

maximum flow provides the largest possible total flow from the source to the sink in a given network. 

Understandably, the maximum flow algorithm can solve many other problems. This is particularly 

true if you model those problems so as to be pertaining to flow networks, such as the bipartite 

matching problem, the assignment problem and the transportation problem. We can effectively solve 

such problems by relabeling them as max-flow ones. The max-flow min-cut theorem states that 

finding a maximal network flow is equivalent to finding a cut of minimum capacity that separates the 

source and the sink, where a cut is the division of nodes such that the source is in one division and the 

sink is in another. 

Some of the well-known Maximum Flow Algorithms include the following:  

 The Ford-Fulkerson algorithm, which was published in 1956 by L.R. Ford Jr. and D.R. 

Fulkerson [4]. (Refer to the next section for more details about this algorithm). 

 The Dinic’s algorithm or Dinitz's algorithm, which is a strongly polynomial algorithm for 

computing the maximum flow in a flow network. This algorithm was conceived in 1970 by 

A. Dinitz [6]. The algorithm runs in        time; where   represents the number of vertices 

or nodes of the capacitated network and   represents the number of edges or arcs.   

 The Edmonds–Karp algorithm, which is an implementation of the Ford – Fulkerson 

method for computing the maximum flow in a flow network in         time. It was first 

published by Jack Edmonds and Richard Karp in 1972 [7]. 

 The James Orlin algorithm, which was published in 2013 [8]. The algorithm runs in 

      time. 

A multi-commodity flow problem consists of many distinct “commodities” that flow from the 

source(s) to the sink(s).  For instance, there might be many goods that are produced at many factories, 

and are to be delivered to many given customers across the same transportation network.  A minimum 

cost flow problem has multiple branches, where each branch       has its cost per unit of flow of 

      , so that the cost of transmitting the flow         through the branch is              . The 

aim is to transport particular value at minimum total cost from the source to the sink. 

A circulation problem is another aspect of a flow network, which has a lower bound         for flow 

on the branch      , as well as an upper bound        on it. Every branch also has a certain cost per 

unit of flow. In this problem, the sink is linked back to the source and the flow conservation rule holds 

for all vertices. Therefore, it is possible to control the total flow with the lower and upper bounds  

       and       . The flow therefore circulates over the network, a fact which accounts for the name 

of this type of problems. 

Figure 3. The flow network in Fig. 2 redrawn to 

show the residual capacities. 

 

Figure 2. Illustration of flow 

and capacity in a flow network 
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A graph with gains is a generalized network in which each link has a gain, which is a non-zero real 

number. In such a graph, if a link has a gain  , and an amount   flows into the edge at its tail, then an 

amount    flows out at the head of this edge. 

Another aspect of flow network is the source localization problem, where the pertinent algorithm 

anticipates localities of excessive flow through knowledge of flow distribution across a moderately 

monitored graph.  Such an algorithm is useful for tracking mobile phone users and identifying sources 

of disease outbreaks since it can be implemented in arbitrary networks in cubic time or in tree 

networks in linear time. 

 

3. The Ford and Fulkerson Algorithm   

3.1. Definition  

 
This section presents the Ford and Fulkerson method (also called the Ford and Fulkerson 

algorithm (FFA)), which is used in a flow network to solve the maximum flow problem [2, 3, 12, 63, 

and 65]. 

The approach pertaining to finding the augmented paths in a residual network is referred to simply as 

a “method” rather than an “algorithm” because this approach is not fully specified [9]. It is a broad 

approach that encompasses multiple implementations with differing execution times [2]. Ford–

Fulkerson is a combination of names of the publishers of this algorithm, L.R. Ford Jr. and D.R. 

Fulkerson [4], who published it in 1956. The Edmonds–Karp algorithm is a common terminology 

used to define the Ford–Fulkerson method implementation.  The method proposed by Ford and 

Fulkerson is dependent on three crucial concepts, which makes it a superior method among other flow 

algorithms and problems. These concepts include cuts, augmented paths and residual networks. 

Typically, these concepts or ideas are necessary and crucial aspects of the max-flow min-cut theorem.  

This section ends with detailed analysis of the Ford and Fulkerson method and some essential 

examples [2, 3, 12]. 

The Ford-Fulkerson method repeatedly increases the value of the flow. It begins with          for 

all      , giving a zero-initial value of the flow. At each step or iteration, the value of the flow in    

is increased by finding an “augmenting path” in an associated “residual network”    . A path is called 

an augmenting path if there is some available capacity on all edges belonging to this path. Once we 

know the branches of an augmenting path in    , we can easily identify specific branches in   for 

which we can update the flow so as to increase the flow value. Although each step of the Ford-

Fulkerson method increases the flow value, we should notice that the flow on any specific branch of   

can increase or decrease. In fact, decreasing the flow on some branches might be necessary in order to 

enable the algorithm to transmit more flow from the source node to the sink node. We iteratively 

augment the flow till the algorithm terminates when the residual network has no more augmenting 

paths. The max-flow min-cut theorem shows that, upon termination, this procedure produces a 

maximum flow [2, 3, 12].  In other words, the concept behind the algorithm is as follows: as long as 

there is a path from the source (start node) to the sink (end node), with available capacity on all edges 

in the path, the source-to-sink flow might be augmented by utilizing the available capacity along this 

augmenting path. Then we find another augmenting path, and so on till no path can be found with 

available capacity on all its edges. 

 

 

3.2. Some useful terminology 

 In order to implement and analyze the Ford-Fulkerson method, we need to introduce several 

additional concepts such as:   

 Source/Sink: The source/sink vertex is such that all its edges are outward/inward ones, and 

none of them is inward/outward. 

 Residual networks: Given a flow network   and a flow   , the residual network    consists 

of links with capacities that represent how we can change the flow on links of the flow 

network  . A link (edge) of the flow network   can permit an amount of additional flow 

equal to the link’s capacity minus the actual flow   on that link. If that value is positive, we 
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place that link into the residual network    with a “residual capacity” of                

        The only links of the flow network   that are in the residual network    are those 

that can permit more flow. Those links       whose flow equals their capacity have 

           and they are not in the residual network    . Moreover, we can define the 

residual graph as a graph which indicates additional possible flow. If there is a path from 

the source to the sink in the residual network, then there is a possibility to add more flow 

along that path that equals the minimum residual capacity on the edges of this path.  

 Minimal cut: Also known as the “bottleneck capacity,” which decides the maximum 

possible flow from   to   through an augmented path. In other words, the bottleneck capacity 

of the path is the minimum capacity of any edge on the path.  

 Augmenting paths: An augmenting path   is a basic link from node   to node   in a residual 

network, provided there is a flow network         and a flow  . Possibly, we might 

increase the link       flow of an augmenting path by the amount         ,  following the 

definition of a residual network. That is possible with no violation of branch capacity on 

whichever of       and       is in the original flow network  . Actually, augmenting paths 

is achievable by considering any of the two kinds of edges: (1) Non-full forward edges, and 

(2) Non-empty backward edges. 

Augmenting path theorem: A flow   is a maximum flow if and only if no augmenting paths exist. 

 

3.3. Algorithm 

Consider         as a flow network, and for every branch from   to  , let        be the capacity 

and        be the flow.  Therefore, it possible to determine the maximum flow between the sink node 

   and source-node  .  Table 1 shows the prerequisites that must be fulfilled after each step in the 

algorithm. Each of these prerequisites does not change after every stage of the algorithm: 

 

 
Table 1: Prerequisites that must be fulfilled after each step in the algorithm 

 

Capacity constraints 

 
                       

Edge Capacity defines 

the bounds for 

maximum flow along 

the path. 

Skew symmetry 

 
                        

Flow from   to    

equals the negative of 

flow in the reverse 

direction.  

 Flow conservation 

 
                          

   

 

Unless the node is a 

source (producer) or a 

sink (consumer), the 

net flow is zero. 

Value     
 

               

              

 
Exiting flow at    

equals flow entering 

 .  

 
Table 1 shows that every round in the algorithm results in a legal flow within the network. Therefore, 

the residual network           can be defined as a network with a capacity of                 

        and a zero flow.  Notably, it is possible that flow from   to   be permitted in the residual 

network, but prohibited in the initial network. This happens when                       for 

then                                          

3.4. Entire algorithm 

 
The following steps describe the Ford-Fulkerson algorithm used to solve maximum flow problems: 

 



 

 - 8 - 

Start 

 

Inputs: Given is a network         with flow capacity  , a source node  , and a sink node   
Output: Compute a flow   from   to   of maximum value 

1.          for all edges       . [ Start with initial flow as zero]. 

2. While there is a path   (to be denoted as an augmenting path) from   to   in   , such that 

          for all edges          

a) Find                            

b) For each edge         

i)                     (Send flow along the path)  

ii)                      (The flow might be “returned” later)  

 

 “   denotes assignment. For instance, “largest   item” means that the value of largest 

changes to the value of item. 

 “return” terminates the algorithm and outputs the following value. 

End  

Note that      will never reach    whenever no more paths exist in the residual network as shown in 

step 2. Assuming   represents the set of nodes reachable by   in the residual network, then the 

original network’s total capacity of edges beginning from      is equivalent to the net flow found from 

  to  . It also denotes the upper limit for all potential flows. Therefore, the final flow is maximum. 

Further details on Max-flow Min-cut theorem are reported in the next section. 

If the network        consists of  many sources and many sinks, then it is worked out as follows: 

Assume that                    and                      Add a new source    with an edge 

(      from     to every node      with capacity                                       

Similarly, add a another sink   with an edge (      originating  from each node     to   , with 

capacity                                     . Finally, use the Ford-Fulkerson’s algorithm. 

Similarly, replace a node     if it has a capacity constraint     with two nodes         , connected by 

an edge (           which possesses a capacity                  After this, apply the Ford–

Fulkerson algorithm.  

3.5. The Algorithm Complexity  

 
Adding more augmenting paths to an already established network flow has a limit, where no more 

augmenting paths are available in the network. Nevertheless, there is no guarantee this limit may be 

achieved; therefore, the correct results are achievable when the algorithm terminates. Issues regarding 

the termination of this algorithm will come later in this paper. In the case that the algorithm runs 

forever, the flow could not even converge towards the maximum flow. However, this situation only 

happens with irrational flow values. When the capacities are integers, the runtime of Ford–Fulkerson 

is bounded by       where   is the number of branches in the network and   is the maximum flow 

in the network. This is because each augmenting path can be found in      time and it increases the 

flow by an integer amount of at least 1, with the upper bound of  . 

The Edmonds–Karp algorithm is another variant of the Ford–Fulkerson’ algorithm, which executes in 

        regardless of the maximum flow value, and guarantees termination. 

 

 

 

 

 

 

3.6. Examples:  

 

Example 1 
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Table 2. Example 1 

 
Augmenting 

path 
Bottleneck Capacity Resulting Flow Network 

 Initial flow network  

 

        

                              

                          

                       

                         

 

        

                              

                          

                         

 

            

                                

                      

 

 

 

          

                                

              

 

 

 

          

Final flow network: 

 

                                

              

 

 

 
 Max. Flow = (8+2+4+2+3) = 19  

 

 

Example 2 

 
Table 3. Example 2 

 



 

 - 10 - 

Path Capacity Resulting Flow Network 

 Initial flow network  

 

A, B, C, D 

                              

                                 

                

                           

 

A, C, B, D 

                              

                                 

                

                              

 
After 1998, more steps… 

 Final flow network 

 

 

 

Example 3 
Table 4. Example 3 

 

Augmenting 

path 
Bottleneck Capacity Resulting Flow Network 

 Initial flow network  
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Final flow network 

                               

    

 
 Max. Flow = (4+ 5+ 3+ 1) = 13  

 

 

3.7. The Non-terminating Case  

 
Understandably, it is widely accepted that the Ford-Fulkerson algorithm does not need to terminate 

for so as to find the maximum flow, specifically, when the arc capacities take irrational values. 

Although all non-terminating instances converge to a limit flow, this limit flow does not necessarily 

imply the maximum flow of the network. Therefore, it is possible to exceed the limit flow and restart 

the algorithm, which justifies the classification of this method as a transfinite algorithm.  Based on 

transfinite runtime-time analysis of the Ford-Fulkerson algorithm by Backman & Huynh [11], the 

worst-case execution time is         using ordinal numbers. Similarly, Backman & Huynh [11] show 

it is viable to model an Euclidean algorithm via Ford-Fulkerson on an auxiliary network. They 

determined that running the above example on a pair of incommensurable numbers could yield a 

robust non-terminating example.  

Another non-terminating example is given below [10]. This example considers the flow network that 

is indicated on Figure 4. It has a source  , a sink  , and the edge capacities              , respectively 

with values      
    

 
       while the capacity of each of the other edges is an arbitrary integer 

     The constant   is selected carefully so that                    Table 5 defines how 

we apply augmenting paths: 
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Figure 4. A flow network for which the Ford-Fulkerson does not terminate 

 

Table 5. Relation between augmenting paths and residual capacities for the network in Fig. 4 

 

Step 
Augmenting 

path 
Sent flow 

Residual capacities  

         

0          1 

1              1       0 

2          0    

3             0 

4       0       

5             0 

 

 
For some    , the residual capacities for edges              take the values                 
respectively, after each of step 1 and step 5.This implies that the residual capacities of these edges will 

take similar format regardless of whether we augment paths              infinitely. The net flow of 

the network at step 5 takes the value              The total flow converges towards 

                                              
 

    
 

if we use the augmenting paths repeatedly.  Nevertheless, it results in flow value of       if we 

direct   units of flow along         unit of flow along          and   units of flow along        
Consequently, the algorithm runs infinitely with no convergence at the maximum flow [10]. 

 

4. The Max-Flow Min-Cut Theorem  
 
4.1. Definitions and statements  

 
The max-flow min-cut theorem holds when maximum flow between the source   and the sink   is 
equate to the total capacity of the links (edges) in a minimum cut [2, 3, 5, 13, 63, 64].  The theorem is 

considered a unique instance of duality theorem for linear optimization, which might be applied to 

develop the Kőnig’s theorem and Menger's theorem [13].  In other words, The Ford-Fulkerson method 

iteratively augments the flow along the augmenting paths until it reaches a maximum value of the 

flow [4]. Therefore, the following questions are necessary: When do we actually get the maximum 

flow in a flow network? In addition, how do we know when to terminate the algorithm? To answer 

such questions, the max-flow min-cut theorem expresses that a flow is maximum if its residual 

network has no augmenting path. Actually, the theorem has two significant parts: the maximum flow 

through a flow network, and the minimum capacity of a cut of the flow network. To express the 

theorem, each of these parts should be defined first.  

Let         be a directed flow network, where   represents the set of nodes (vertices) and    the 

set of links (edges). Let     and     be the source and the sink of  , respectively.  A link (edge) 

      is characterized by a mapping          indicated by     or        where         It 

indicates the maximum value of flow that can pass through this link.  

 

 

4.2. Analyzing the Algorithm: Flows and Cuts 

 
The next objective is to illustrate that the Ford-Fulkerson Algorithm returns flow that is possibly the 

maximum value in any flow in  .  

Flows:  The function        represents a flow mapping     or         subject to the following 

two restrictions: 

1. Capacity Constraint: Given any link       in            
2. Flow Conservation:  The equality below holds given any node     other than    (the source) 

and   (the sink): 
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Flow is typically a representation of transportation of a commodity or fluid in the direction of each 

link through a network. The flow through the link cannot exceed its maximum limit, which is called 

the capacity constraint. In addition, the conservation constraint holds, which states that amount of 

flow through each node (other than the source and sink nodes) must equal the amount leaving it. 

The definition of the magnitude of flow through node   is shown below: 

        
           

      
           

 

Where the node   is the source node and    is the sink node. Based on the fluid or commodity 

comparison, it denotes the volume of fluid or quantity of commodity that enters the network at the 

source, and then leaves at the sink. Note that the same amount of flow entering at the source must 

leave at the sink to uphold the conservation rule.  For any given network, the maximum flow problem 

seeks to achieve the maximum flow [2, 3]. 

 

Maximum Flow Problem. Maximize         which aims to achieve the highest possible flow 

from   to    
Cuts: The second part of the max-flow min-cut theorem refers to another side of the network: which 

is a group of cuts. For instance, the s-t cut          in a flow network         is a partition of   

into   and       such that     and    . In other words, an s-t cut represents partitioning of 

network vertices into two disjoint parts: one part including the source node, with the other containing 

the sink node. The cut set    of a cut   constitutes the set of links that joins the source part    of the 

cut to its sink part  :  

                              

Therefore, if we remove all the edges in the cut set of  , then we cannot have a possible flow, since 

no link exists to establish a connection from the source part    of the cut to its sink part  . If   is a 

flow, then the net flow        across the cut       is expressed as 

               
      

         
      

 

The sum of capacities of its links (edges) represents the capacity of the corresponding s-t cut, 

                   
               ,  

where                       0 otherwise.  

Alternatively, we could state that the capacity of the cut       equals the following: 

                 
      

 

Usually, there are various cuts in the network, so that it becomes inherently complex to find the cuts 

with smaller capacities.  Notably, a cut with the smallest cut capacity all over a network is called a 

minimum cut [2, 3]. Such a minimum cut might not be unique. 

Minimum s-t Cut Problem. Minimize          that is, determine   and   such that the capacity of 

the S-T cut is minimal. 

For the sake of simplicity and clarity, let us elaborate the difference between flow and capacity of a 

cut. In the case of capacity, we count only the capacities of branches passing from   to   , while 

disregarding branches going in the opposite direction.  In the case of flow, it is the flow from   to    

minus the flow in the opposite direction (i.e. from    to   ) [2]. 
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Figure 5. A cut       for a specific flow network, where           and            The 

vertices in   are green, and the vertices in in   are blue. The net flow across       is        
  , and the capacity is            

 

Figure 5 shows the cut                   in a certain flow network. Its total flow across the cut is  

                                 while the capacity is:                    
       
The lemma below shows that the total flow across any cut is uniform for any given flow, which is the 

same as value of the flow    . 
Lemma: Assume that a flow    goes through a flow network   , where    is the source and        
represents some cut in  . Then, the total flow across        is given by:           . 
The important max-flow min-cut theorem, stipulates that the maximum flow value and the minimum 

cut capacity are equivalent.  

4.3. Main theorem 

 
Notably, this theorem shows that there is a link between the capacity of a minimum cut and the 

maximum flow through a network. In other words, a maximum flow s-t  is equal to the smallest s-t  
cut capacity. In fact, if   is a flow in a flow network         with source   and sink  , then the 

following conditions are equivalent [2]:  

1.   is a maximum flow in  . 

2. The residual network    contains no augmenting paths. 

3.             for some cut        of    

 

4.4. Linear program formulation  

 
The max-flow problem and the min-cut problem can be expressed as two primal-dual linear programs, 

as expressed mathematically in Table 6.  

 
Table 6. The LP of maximum flow and its dual (minimum cut)  

 Max-flow (Primal) Min-cut (Dual) 

variables                 [a variable per edge] 

               
[a variable per edge] 

                [a variable per non-

terminal node]   

Objectives 
Maximize                

[max total flow from source] 

Minimize                 

[min total capacity of arcs in cut]   

Constraints 

Subject to 

 

                      

                          

  

 

[every edge and non-terminal node have a 

constraint] 

 

Subject to 

 

                           
       
                                 

                                 

[a constraint per edge] 

Sign constraints                          
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In a straightforward manner, the max-flow linear program can be obtained from the primal column of 

Table 6. Likewise, the dual linear program is obtained by applying the algorithm explained in the dual 

column of Table 6. The resulting linear programs need some clarifications.  To understand the 

variables in the min-cut linear program consider: 

     
                                            

                                                                                
   

 

    
              
           

   

 

Overall, the aim of this minimization entails summing of the capacities of all edges (branches) that are 

contained in the cut. 

These variables represent a valid cut due to the defined constraints: 

 The constraints             (equivalent to            warrants that the edge 

(     is located in the cut (       , for every non-terminal nodes       only when    is 

present in   and   is present in  . 

 The constraints          (equal to           warrants that, if   is in  , then the 

edge (   ) is located in the cut (i.e.    is present in    by default). 

 The constraints          (equivalent to         guarantee that, if   is in  , then the 

edge (   ) is located in the cut because   is present in   by default. 

Notably, there is no guarantee that a specific edge must be present in a cut since this is a minimization 

problem. The only guarantee is that each edge present in a cut is taken into consideration in the 

summation in the objective function.  Therefore, the duality theorem in linear programming follows 

from the max-flow min-cut theorem of equality. It states that an optimal solution    exists for every 

primal program that has an optimal solution   , where the resulting optimal values from both 

solutions are equal. 

 

4.5. Examples 

 

Example 1: 

 

 

 

 

 

 

 

 

 

 

 

 
To demonstrate the aforementioned concepts, consider the simple flow network of Figure 6. 

Assume that the capacities of the edges are as shown in Figure 6, and that it is required to find 

the maximum flow from node A to node D. First, we need to define a cut. Generally, a cut is any 

collection of edges, which totally separates A from D. Therefore, in this example there are four 

possible cuts: {AB and AC}; {BD and CD}; {AB, BC and CD}; or {BD, AC, and BC}. The 

value of a cut is the sum of the capacities of its edges, and the Min Cut Theorem simply says that 

the value of the minimum cut is exactly equal to the maximum flow. Therefore, for Figure 6, it 

can be noticed that there is a single minimum cut, which is that composed of edges BD, AC, and 

BC with a value of 6. The corresponding maximum flow is shown in Figure 7. It can be observed 

that each edge of the minimum cut is saturated (i.e., used to full capacity) as would naturally be 

necessary. By contrast, since the minimum cut is unique, none of the branches not belonging to it 
is saturated. It is intuitively clear that the minimum cut definitely gives an upper bound on the 

maximum flow, but the fact that it is also a lower bound is not nearly as evident.  

Figure 6. A simple capacitated 

(flow) network 

 

Figure 7. The maximum flow for the 

network in Figure 6 

 



 

 - 16 - 

 

Example 2: 

 

 

 
Figure 8. A network with a value of flow that equals the capacity of an s-t cut 

 
The network shown in figure 8 has a flow value of 7, where a numerical expression     is formatted 

along each arrow. As usual, this format represents flow     and capacity    , respectively and the 

flow across any of the four cutsets of the network has same value of 7. In particular, the flow 

originating from the source (the flow across the source vertex cutset) has a value of 4+3=7, as does 

the flow into the sink (the flow across the sink vertex cutset) (3+4=7). 

Notably, blue and pale green vertices form the subsets   and   of an s-t cut, whose cutset has red 

edges intersected with a vertical dashed blue line denoting the cut. Following the max-flow min-cut 

theorem, (equivalence of flow value and capacity of s-t cut equal to 7), the value of the flow and the 

capacity of the s-t cut are equally optimal in the graph. Another crucial observation is that the flow 

through the red edges is at full capacity (saturated) since this cutset is one of the ‘bottlenecks’ in the 

network. On the contrary, some extra or residual capacity exists on the right side of the network. 

Particularly, figure 8 depicts a scenario where flow from vertex   to vertex    is arbitrarily set as 1 

although this should not be necessarily the case. If no flow existed between vertices   and  , then the 

sink inputs will adjust to 4/4 and 3/5 while the total flow remains unchanged (4+3=7). Otherwise, 

doubling the inputs from vertex   to vertex   will cause a change in the sink’ inputs (to become 2/4 

and 5/5), but the total flow will remain the same (2+5=7). 

 

Example 3 (Example 1 of Section 2 revisited): 

 
Figure 9 demonstrates that there exists a unique minimal cut {           whose branch    is 

irrelevant since it points in the opposite direction. The capacity of this minimum cut is the sum of 

edge capacities of branches    and   . Therefore, we obtain 

 Min. Cut: Value of Max. flow = Capacity of Min. cut = 19. 

in agreement with our earlier solution in Example 1 of Section 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. A 9-branch flow network with all 7 possible cuts for Example 3 with a maximum flow 

value of 19 across each of them, with only one of them saturated. 
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Example 4 (Example 3 of Section 3 revisited): 

 
From Example 3 in the previous section 3, we obtain 

Min. Cut Value of Max. flow = Capacity of Min. cut = 13 

 

 

Figure 10. A 9-branch flow network with all 8 possible cuts for Example 4 

 
The network has a unique minimum cut-set:               of minimal capacity         
  . Each of the other cutsets shown in Fig. 10 has a flow of 13 and is unsaturated. 

 

5. Reductions and Transformations Techniques 
 

5.1. Introduction  

 
In a flow network problem like the maximum flow problem and the shortest path problem, it is often 

required to try to simplify the given flow network before using different techniques or algorithms 

available for its solution. This section presents various types of reductions and transformations [14-

16] that can lead to considerable simplification. In particular, we present a star-delta transformation 

that is similar to the one used in electrical circuits [66]. The network in the maximum flow problem 

contains edges, each of which having a certain flow capacity (indicated by a positive integer value) 

associated with it. We are required to find the maximum possible flow between the source node   and 

the terminal node   [4, 18].  Our target in the maximum flow transformations is to prove that in many 

cases the original flow network can be simplified by the star-delta and other analogous 

transformations. Such simplifications can significantly reduce the computations involved in using the 

Max-flow Min Cut theorem, and in particular when the maximum flow between several pairs of 

points is required. Moreover, these simplifications might also reduce the network to a tree, in which 

the maximum flow between any pair of terminal points is readily observable. 

To begin, let us mention the three most crucial reduction rules (flow network simplifications): 

 

5.2. Rule 1  

 
Two edges in series with capacities           can be replaced by a single edge with a capacity equal 

to             as can be seen in Figure 11 

 
 

Figure 11. Network simplification of branches in series 

 

 

5.3. Rule 2  
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Two edges in parallel with capacities           can be replaced by a single edge with capacity equal 

to         as can be seen in Figure 12. 

 

 
 

Figure 12. Network simplification of branches in parallel 

 

5.4. Rule 3 

 
An edge between two points might be ‘shorted’ if its capacity exceeds or equals the sum of capacities 

of all other edges incident on one of the two points. 

 

 

 
 

Figure 13. Network simplification of branches for Rule 3 

 

5.5 Star-Delta Transformation 

 
Now consider the star-delta transformation [14-17]. Let us consider a given flow network that 

contains a ‘delta network’- viz, three points that are joined together, two at a time, with three edges, 

each of which having a finite capacity (See Figure 14). The task is to replace this delta network by a 

star network (dotted lines in Figure 14) and to select the capacities              such that the 

maximum flow through this new network remains the same as before. Assume the flow through the 

delta is as shown in Figure 14. Then,   

 

                    (1) 

                    (2) 

                    
(3) 

 

 

 

 

 

 

 

 

 

  

 
Figure 14.   The flow through the 

delta network 

 

Figure 15. The flow through the 

wye network 
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The sign of the flow should be allowed to be either negative or positive since the actual direction of 

flow is unknown.  Adding equation (1) to equation (3) we obtain,  

 

                                                                         (4) 

Therefore, if in the star we let 

                                                                                              (5) 

Then it can be noticed from equation (4), that this edge can handle the flow from (or to)    that 

originally passed through edges 1 and 3 of the delta. 

The same argument applies for            so that we let  

 

                                                                                                                                (6) 

                                                                                                                     (7) 

Therefore, if we select capacities              according to equations (5), (6), and (7) we notice that 

any flow through the original ‘delta-network’ can also be handled by the ‘star-network’. Likewise, 

any flow that we select for the star-network can similarly be handled by the original delta-network. 

Let us assume that the flow through the star-network is as shown in Figure 15 such that   

 

                  (8) 

                   (9) 

                  (10) 

                   (11) 

 

Now, we can find              in Figure 14 where 

 

                      (12) 

                      (13) 

                     (14) 

 

and such that equations (1), (2), and (3) are satisfied.  Note that if equations (12) and (13) are satisfied 

it will follow from equation (8) that equation (14) is also satisfied.  

Firstly, we solve for           in equations (12) and (13) and then rewrite equations (1), (2), and (3) 

to get 

 

                      (1) 

                  
   

                  
   

 

 

Then, it follows that we should choose    where  

                                                              (15) 

This can be done provided each term in the right-hand side of equation (15) is less than or equal to 

each term on the left-hand side of it. Let the right terms be              correspondingly and the left 

terms be             . Subsequently, we must satisfy each of the nine inequalities that are shown 

below 

 

        (definition)                      (6), (10)                          (5), (9) 

        (6), (10)                    (definition)                 (7), (8), (11) 

        (5), (9)                     (7), (8), (11)                  (definition) 

 

Hence,    (and thus             can be found and indeed    might be selected as                or 

              . It can be shown that from the aforementioned relations, by applying equations (.5), 

(6), and (7) any delta network can be transformed into an equivalent star network. As a result, the 

transformations from a wye to a delta is given by: 

 

    
                 (16) 
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                 (17) 

    
                 (18) 

 

5.6 Example 

 

 

 
 

Figure 16. A capacitated network of 11 branches  

 
In this example, it is required to find the maximum flow between node   and node    in the network 

shown in Figure 16. As an offshoot of the solution procedure, we will be able to go further and 

consider   as a terminal point in the network and ask to find the maximum flow between node   and 

node   and between node   and node  . 

It can be noticed that, the node   can be eliminated since this node is an intermediate point at the 

center of a wye that can be transformed to a delta comprising three branches of capacity 5 each. This 

transformation is done by applying equations (16), (17), and (18), and after combining the resulting 

parallel edges between node   and node   and between node   and node  , the result is as shown in 

Figure 17a. It can be observed from the network that the capacity of an edge     is greater than the 

sum of the other edges into  ; thus, we will apply rule 3 and         will be combined into a single 

point, and the emerging parallel edges are combined according to rule 2 as can be seen the result in 

Figure 17b. Now node   becomes a logical choice to eliminate as the center of a wye to be 

transformed into a delta, with the emerging parallel edges being combined as shown in Figure 17c. 

Finally, this delta is replaced by an equivalent wye as shown in Figure 17d.  The maximum flows 

between pairs of terminal points can be found since there is a prominent path between the ends of 

each pair of terminal points. The value of each maximum flow is equal to the minim capacity of the 

edges of the corresponding path where:  

                                       

Note that all of the three transformations so far discussed were employed in obtaining this result. To 

find the actual paths that a flow should follow it is necessary merely to start with Figure 17d and work 

successively backwards.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 - 21 - 

 

 

 

 

 

 
Figure 17. Transformation procedure for the flow network in Figure 16 

 

 

6 The Decomposition Technique 

 
The decomposition technique involves tuning a complicated network (complex system) to adopt the 

possible states of a keystone element    or the possible combinations of states of many keystone 

elements [5, 21-25, 62]. In other words, this method entails a single application or multiple 

applications of the law of total probability. In its simplest form, it involves selecting a keystone 

element and then computing the reliability of the network twice: once as if the keystone element did 

not succeed (   ) and once as if the keystone element were good (   ). After that, the method 

combines these two probabilities to get the reliability of the system, since at any given time the key 

component will be failed or operating. The Venn graph in Figure 18 shows the event  , which 

signifies that the system is working successfully. This event  can be partitioned in the form of a union 

of two dependent events that are mutually exclusive, namely (i)     , which indicates that the 

keystone branch is in the operating state and the system is working and (ii)      , which indicates 

that the keystone branch is in the unsuccessful state and the system is functioning correctly.  

 

 
 
Figure 18. Event S, which indicates a fully functional system, partitioned as the union of a pair 

of mutually exclusive events:      and       

 
The technique’s main objective is to decompose the system graph into two sub graphs      

and      , each of which is with a simpler topology than that of the original graph. Based on the total 

probability theorem (see, e.g., DeGroot [19] & Ross [20]), the probability       of event   that the 

system is operating, is obtained as the sum of probabilities of the afore-mentioned two mutually-

exclusive events:  

                                                                       (19) 

Equation (19) can be simplified via 

                            and                               , to find: 

                                                                     (20) 

In equation (20)          is the probability that the network is working given that the keystone 

element is in the operating state and           is the probability that the network is working given that 

the keystone branch is in the failed state, while          and           are the probabilities that the 

keystone element is in the operating state and in the failed state, respectively. Likewise, if a pair of 

independent keystone branches    and    have been chosen (rather than just one keystone branch), 

the probability of network success       (the reliability of the system) is determined as the 

summation of probabilities of four events, which are all mutually exclusive  
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The network in Figure 19, for instance, cannot be simplified by using series-parallel reduction. 

However, its analytical reliability is computed through the afore-mentioned decomposition technique. 

The system includes eight unreliable branches with availabilities      . Since a directed s-t path 

exists between the source   and the sink  , the throughput flow is greater than zero. 

 
Figure 19. Decomposition technique for evaluating complex systems’ reliability 

 
If branch (1, 3) is chosen as a keystone element  , the probability of network success       is 

obtained based on the following equation  

                                                                        (21) 

The probability         of the network in Figure 19B can be obtained through a series-parallel 

reduction. The parallel sections (1, 2) and (1, 4) dictates the success probability of two parallel 

components, which is equivalent to            . Therefore, the success probability for the 

system in Figure 19B becomes  

                       
                                                  (22) 

Figure 19C, which shows the network’s success when the keystone element fails, yields  

                                                                                       (23) 

Since         and             the substitution in equation (21) yields the probability of 

network success       for the initial network in Figure 19A:  

                       
                        (24) 

Substituting in equation (24) with        yields          and             
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Figure 20. Decomposition-based technique for determining a topologically complex network’s 

reliability on sequential selection of two keystone components 

 
If the probability of success for any basic network is hard to compute, an alternative decomposition is 

selected by choosing another keystone branch    and so on. The process is iterated until networks are 

obtained whose probability of success can be assessed effortlessly via series-parallel reductions. 

Consider the complex system   in Figure 20A which contains seven independent identically 

distributed branches each with reliability   . The network works if an s-t path between the source node 

and the sink node exists.  

Although this network is not trivial, it can be simplified if a keystone component    is selected. The 

reliability of the system       (The probability of network success) can be obtained from equation 

(20). Since the probability          and             the probability of network success 

becomes  

                                                                          (25) 

The probability of network success           shown in Figure 20C can be readily obtained because it 

is equivalent to the network shown in Figure 20F, whose branches have a simple series-parallel 

reduction. Consequently, the probability of a directed s-t path for the system shown in Figure 20C is  

                                                                              (26) 

For        equation (26) evaluates to                 
The subgraph shown in Figure 20B which results from the decomposition of the sub graph shown in 

Figure 20A is not a trivial subgraph. However, by picking another keystone branch   , it can be 

decomposed further into two trivial subgraphs (Figures 20D and 20E) whose probability of success 

can be evaluated easily. Thus, 

                                                               (27) 

 

For        we obtain 
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Substituting these values in equation (27) yields 

                                                                   (28) 

Finally, the substitution in equation (25) gives  

                                

for the probability of success, in the initial graph of Figure 20A.  This example demonstrates that the 

decomposition technique can be applied for the analysis of a complex system, and might be adapted 

for computations pertinent to capacitated networks [20, 67]. This technique, however, has substantial 

constraints. For instance, it is inappropriate for large systems. A keystone selection splits large system 

into two sub-systems, which in turn are split again, and the process continues. For a large number   of 

branches in the initial system, the number of sub-systems generated through the decomposition with 

respect to keystone elements quickly increases exponentially and becomes uncontrollable for large  . 

Regardless of the considered techniques, the reliability analysis of a system based on minimal cut-sets 

and minimal paths can be applied for determining the probability of system success.  Likewise, the 

main problem of reliability analysis is the increase in network size with every additional minimal path 

and cut-set.  

In conclusion, the discussed analytical technique for the analysis of capacitated networks are not 

appropriate for sizeable and complex systems. The system reduction rule is not appropriate for 

topologically complex systems while the decomposition technique is not appropriate for large 

systems. 

 

 

7. Flow Networks Applications  

 
Flow networks have useful applications in real-world scenarios, such as distribution of electricity and 

transportation networks. The same principle applies in all the applications, where the inflow at a 

specific node must equal the outflow at that node.  The conservation constraint is analogous 

to Kirchhoff's current law in electric circuits. In this section, various applications of flow network 

problems are explained based on all kinds of problems discussed earlier. Section 7.1 highlights 

maximum flow problem applications in various categories like web communities, image 

segmentation, telecommunications, wireless networks and transportation. Additionally, Section 7.2 

discusses the implementation of minimum-route problems, and their utilizations in various areas, such 

as very large-scale integrations, facility layout design, facility location and robotics. Besides, we will 

introduce in each of these two subsections a brief explanation about each application, supported by 

appropriate reference to pertinent research papers. 

 

7.1. Applications of the Maximum Flow Problem 

Capacitated networks play a vital role in our modern society. Their applications cut across a variety of 

areas such as transportation systems and manufacturing networks. Notably, they comprise important 

aspects of flow of basic items from suppliers to customers. They are also instrumental in the 

implementation of telephone networks, which enable cross-border communication. Similarly, 

computer network technology uses this flow network problem to implement broadband 

communication and internet services, which allow easy communication within local or global 

communities. 

7.1.1. Telecommunication Wireless Networks  
Till today, many people might think that in telecommunication wireless networks, there are no edges 

between terminal points or vertices. Other common network structures include wired networks that 

use wires or cables or transportation networks that have easily observable physical links between 

vertices. However, flows in wireless networks are mainly expressed as electromagnetic waves 

broadcast by the communication system through a communication channel that might be a material 

medium or vacuum. Generally, telecommunication networks have several applications in the wireless-

communication areas such as satellites, the Internet, and cellphones, etc. Like many other network 

structures, the transmission of the maximum possible flow (waves) through these frameworks is a 

crucial task in the telecommunication systems; thus, the operation of the maximum flow methods 



 

 - 25 - 

remains useful for telecommunication systems [56]. In general, an overview of the performance of a 

telecommunication is presented below. 

A typical broadband connection has several users (nodes or vertices) with various needs.  These needs 

vary based on the traffic usage in particular; therefore, prioritizing internet services based on utility 

rates is crucial for efficient service delivery. Therefore, offering maximum service means creating 

maximum flow (waves) across areas with the most signal interruptions by end users. While this may 

imply installing additional base stations, it also increases noise, which may affect the quality of 

waves. So, the providers need to constantly monitor the quality of their transmissions. Rushdi and 

Alsalami [52] examined two simples, albeit useful, methods used to evaluate the reliability of two-

terminal multistate flow networks in communication systems. Their target is the evaluation of the 

probability mass function (pmf) in a wide array of cases, in which they consider flow in a capacitated 

network from a source node to a sink node with a multistate capacity model for the links. Each 

network link has a varying capacity, which is assumed to exist in a mutually exclusive sense. The 

reliability of the system is wholly dependent on its ability to transmit successfully at least a certain 

required system flow from the source (transmitter) to the sink (receiver) station. The max-flow min-

cut theorem is critical in obtaining all successful states.   

 

7.1.2. Image Segmentation  

 
One of the most prominent research topics in the field of medical systems is that of an image 

segmentation system. This system delineates the parts of the body or organ images in such a way that 

the infected part of the body (e.g. cancer tissues) can be obviously shown. For instance, examination 

of kidney tumor offers an ideal application of the maximum flow problem to produce images for 

various tissue slices in such a way that the important part of the tumor tissue can be clearly evaluated. 

Any two parts of organ has special connection in biological organ examination. Therefore, the image 

segmentation for body organs is greatly different from other kinds of images [54]. Notably, there are 

similarities between the image segmentation problems and the maximum flow concept, since it 

replicates the theorem of the max-flow min-cut, which is the core of the maximum flow problem. The 

corresponding nodes and links might also be defined in medical parameter terms if the graph or image 

is configured as two portions. Therefore, the best cut separating the graph into two parts exhibits the 

minimum cut capacity or analogously, the maximum flow delivered from part 1 to part 2. 

 
7.1.3. Extraction of Web Communities  

 
The web is a common application of maximum flow problem, which is a directed graph or flow 

network. Each web page is a node while the hyperlinks are its branches in graph theory. As a normal 

browser of the Internet, when you are looking for a particular item via the Internet (e.g. certain items 

on the Amazon site or a research paper in Google Scholar, etc.), obviously, you expect to find out 

your item that you are looking for quickly. This accessibility depends on several crucial 

considerations; one of them is the connection between web pages, or so-called nodes in graph theory, 

to each other via hyperlinks (branches).  Therefore, the interlinked web pages will significantly affect 

access speed by the end-users. Actually, one of the crucial factors in this subject is the significance of 

this web analogy. This is crucial since the Internet browser (user) normally would not be expected to 

go to shopping sites while he is looking for a research paper! According to this assumption, a 

community of the Web can be described as a group of websites. These websites have more 

connections or hyperlinks than websites outside the scope of the community [43].  The difference is 

glaring when you compare scientific research or academic related web communities with shopping 

communities. Notably, applying the maximum flow problem and its theorem (the max-flow min-cut 

theorem) on these web communities can help extract related web communities. Flake et al. [41] 

showed that applying the maximum flow algorithm on these communities yields a pair of nodes, such 

as a source node and a sink node, which are accessible from the source node across augmenting routes 

that satisfy the web community definition. However, if the minimum cut links remain unsaturated, in 

which case the flow along these links might be augmented, such links might be added to the web 

community. If this is the case, then the process will be repeated until all links become saturated (the 

flow along all edges cannot be augmented anymore). During this step, the web community will be 

recognized and the links that connect it to another web community will remain unsaturated.    

 

7.1.4. Transportation  
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There are several cases of a transportation system where the theorem of the maximum flow can be 

applied like the following cases. The first case concerns the popular system structure, where 

maximization of flow between a pair of nodes is the top priority. Consider a supply chain structure, 

which is comprised of clients, retailers, wholesalers, manufactures and service providers. Notably, 

each entity denotes a node or a vertex in graph theory. In such a system, one of the basic and 

important criteria is to convey the product elements and merchandise between every two nodes (such 

as moving goods from distributors to clients), which should involve moving maximum possible items. 

Moreover, another case concerns urban planning systems such as street networks. This network is 

expected to apply the theorem of the maximum possible capacities, where they can utilize the possible 

maximum vehicles to move goods through the streets. Additionally, the case of emergency and high-

priority circumstances can be considered as one in which the maximum flow becomes useful 

whenever high-priority or emergency scenarios exist, Such as a scenario of evacuation of people 

during emergencies like natural disasters. Notably, evacuation of people from affected areas is one of 

the most difficult problems to solve. Such a situation can have a flow-network interpretation, as the 

evacuees (standing for flow “commodity”) must leave the danger area, denoted as the source node, 

towards a secured area, represented as the sink node.  

 

7.1.5. Ecosystems 

 
The flow network has some other applications in ecology, particularly in nutrients and energy flow 

among various organisms in a food web.  Nevertheless, such an application differs from the normal 

traffic or fluid flow due to differences in the mathematical problem associated with it. Ulanowicz and 

Wolff [57] developed a network analysis for the ecosystem field, which applies thermodynamics and 

information theory concepts to examine evaluation of such a field over time. Rushdi and Alsalami 

[53] attempted to set the stage for a prospective interplay between ecology and reliability theory 

concerning the common issue of the concept of a capacitated or flow network. They treat the problem 

of species survivability, which pertains to the ability of a specific species to avoid local extinction by 

migrating from a critical habitat patch to more suitable destination habitat patches via perfect stepping 

stones and heterogeneous imperfect corridors. Their paper proposes various types of techniques for 

analyzing a capacitated ecological network for the process of migration in a meta-population 

landscape network that arises when paths to destination habitat patches share common corridors. Their 

techniques include (a) Karnaugh maps, which are crucial in providing not only the visual insight 

necessary to write better future software but also constitute an adequate means of verifying such 

software and, (b) a generalization of the max-flow min-cut theorem that is applicable through the 

identification of minimal cut-sets and minimal paths in the ecological flow network.   

At the end of this subsection, Table 7 classifies some papers that pertain to some of the afore-

mentioned applications: 

 

 

 

Table 7. Maximum flow problem applications and their classification 

 

Type of application Article The solution approach 

Telecommunication Wireless 

Networks 

 

Azar et al. [31] 

Involves an algorithm and a linear program to 

model a two-part flow problem in 

infrastructure wireless networks with 

adaptive channel width. Notably, the solution 

is adaptable to fit requirements by particular 

applications. 

Caillouet et al. [35] 

Utilizes the max-flow min-cut theorem to 

address bandwidth allocation issues in a 

network (wireless). This theorem uses the 

more common version of graph theory, 

particularly in the development of the Cut 

Covering Problem (CCP). 

 

 

Hu et al. [45]  
Is mostly applicable in solving wireless mesh 

network issues, which include maximum 
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flow and bandwidth routing problems. It also, 

proposes a heuristic algorithm and derives an 

optimization bound. 

 

Thulasiraman & Shen [56]  

Entails design of OFDMA based hybrid 

hierarchical wireless networks to solve 

interference aware resource allocation 

problems.  

 

Rushdi & Alsalami [52] 

Examines two simple (albeit useful) methods 

used to evaluate the reliability of two-

terminal multistate flow networks in 

communication systems. 

 

Image Segmentation 

 

Freedman & Zhang [42]  

Highlights automatic segmentation on 

multiple applications using the interactive 

segmentation algorithm. It seeks to 

implement alternative semi-automatic 

segmentation to enable diversity in 

automation.  

 

Song et al. [54] 

Applied in prostrate and bladder imaging to 

produce shape and appearance information in 

3-D graphs. Notably, the study aims at 

enhancing the quality of medical imaging and 

overcome simultaneous segmentation 

problems. 

Zeng et al. [58] 

Designs and implements a novel graph-based 

min-cut/max-flow algorithm.  It is also useful 

in extracting web communities based on 

maximum flow aspects.  

 

Extraction of Web Communities 

 

Asano et al. [30]  

Shows various uses of maximum flow in the 

extraction of web communities in web-based 

sites.  

 

Horiike et al. [43]  

Proposes an algorithm to extract research 

communities from bibliography data, and 

discusses a case study dealing with the web 

mining from Cite Seer bibliography data. The 

technique applied there is the maximum flow 

concept.   

Imafuji & Kitsuregawa [46]  

Uses the maximum flow algorithm to extract 

a sub graph, which can be recognized as a 

good web community in qualitative and 

quantitative contexts. 

Transportation 

 

Anderson et al. [27]  

Applies a case study in mapping modern 

roads using sensors against terrorist attacks. 

Moreover, it is useful for detection and 

prevention of attacks, which target populated 

areas. 

 

Brede & Boschetti  [34]  

Highlights a weighted passenger flow 

network for passengers in European 

countries.  In addition, it uses the maximum 

flow network concept. 

 

 al skan [36]  

Presents a simplex algorithm to solve 

constrained transportation issues.  
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Rebennack et al. [51]  

Depicts a specific solution for emergency 

transport management using the maximum 

contraflow concept. 

Ecosystem  Rushdi & Alsalami [53] 

Attempts to set the stage for a prospective 

interplay between ecology and reliability 

theory concerning the common issue of the 

concept of a capacitated or flow network. 

 

 

7.2. Applications of the Minimum-Route Problem 

7.2.1. Very-Large-Scale Integration (VLSI)  

 
Mostly in network design, millions of very small components including transistors, resistors, and 

diodes are assembled on a microchip to come up with an integrated circuit on a very large scale. Very-

large-scale-integrations (VLSI) have improved a lot over the years due to various technological 

advancements. Today, microchips that can store millions of megabytes of data exist due to integrated 

circuits that consist of millions of very small transistors. Thus, the very-large-scale integration system 

is mostly troubled with the discovery of suitable paths and layouts that enable transmission of data or 

nay information over the minimum routes. The VLSI problems become easier since technology can 

help humans generate the minimum routes required to create a grid graph consisting of millions of 

nodes [49]. Actually, the minimum route notion in this context indicates the minimum-wired distance 

between two metal elements, which are supposed to be connected in a grid graph.  The Euclidean and 

rectilinear distances are the common means for measuring the gaps between nodes or vertices (chip’s 

components). 

 
7.2.2. Robotic Systems  

 
Robots are rapidly becoming indispensable essential elements in industries and home applications. 

Therefore, scientist continue to explore routing solutions for these robots to integrate them in our daily 

operations. The need to solve the routing problem is even more urgent for autonomous robots. 

Notably, we do not fancy robot accidents that perform important functions aside from the need to 

operate efficiently without wasting time during movement [50, 55]. Notably, route planning for robots 

can also benefit from the minimum route problem. Similar applications that utilize the maximum 

route planning include computer aided manufacturing (CAM), computer aided design (CAD), and so 

on. Therefore, implementing routing algorithms in robotics will not be a new phenomenon.  

 
7.2.3. Hazardous Materials Transportation (HMT) 

Today, transportation and disposal of hazardous materials is a sensitive issue since it involves 

transporting things like chemicals, cryogens, gas cylinders, etc. Since these materials are oversensitive 

as they are excessively or abnormally responsive or susceptible to specific stimuli or agents, they 

should be transferred from a source node to a sink node through the minimum route. Therefore, in 

order to reduce the primary risk encountered when shipping these materials, the best k-minimum 

routes are factored in during routing for emergency purposes. Therefore, transporters can shift from 

one optimal route to the other during emergencies [38]. In fact, the route from the source node to the 

sink node can be the minimum route, but it passes through many residential areas. Thus, such a route 

is rather omitted and replaced by other nearly-optimal routes that expose less people to risks.  

7.2.4. Facility Location and Facility Layout  

 
Moving between facilities can be a hard task, especially when it involves traversing multiple routes. 

Therefore, facilities can be considered as network nodes, where the minimum route problem can be 

used to find the minimum possible routes between two locations. The case study of the manufacturers, 

suppliers, distributors and customers provides an ideal example when minimizing distance. For 
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instance, decision-makers will prioritize minimizing distance between manufactures and suppliers, 

then distributors in that order. Similarly, the route between machines and other essential items are 

crucial in the layout problem. The proximity, for example between a machine and another piece of 

equipment, should be easy to adjust using the minimum routing to facilitate operations and efficiency.   

At the end of this subsection, a few useful papers that are relevant for each of the afore-mentioned 

applications are summarized in Table 8. 

 

 

 
Table 8. Sources related to the shortest path problem 

Type of application Article The solution approach 

Very-Large-Scale Integration (VLSI)  

Aggarwal et al. [26]  

Presents a solution for determining the 

shortest path in the VLSI layout problem 

using a multi-layer grid model.  

 

Brazil et al. [33]  

Solves the VLSI wiring design problem by 

determining the shortest length or a network 

(Steiner-tree network).  

Peyer et al. [49]  

Obtains the shortest path in VLSI problems 

with the help of a Dijkstra’s-based algorithm.  

 

Robotic Systems  

 

Asano et al. [29]  
Employs pseudo ε-approximate approaches 

to plan (Euclidean) shortest path  for robots. 

Kala et al. [47]  

Highlights various approaches to find best 

robot routes though fuzzy-based and heuristic 

shortest path algorithms. 

Priya et al. [50]  

Introduces a solution for mapping the best 

(shortest) paths between a pair of mobile 

devices with Field-programmable Gate 

Arrays (FPGA)  

Sun et al. [55]  

Proposes a Dijsktra-like algorithm based on 

the tabu restriction concept. It is mainly used 

for robotic path planning. 

 

Transportation of Hazardous 

Materials  

 

Androutsopoulos and 

Zografos [28]  

Poses a simultaneous routing and scheduling 

problem used in minimizing routes during 

transit of hazardous materials.  

 

Boulmakoul [32]  

Applied in transport of toxic materials and 

uses the geographical information system 

(GIS) to get optimal k-shortest routes.  

 

Carotenuto et al. [37]  

Is an equitable approach towards transport of 

hazardous substances using a risk-based 

mathematical model. 

Dadkar et al. [38]  

Depicts transport of toxic materials in US 

roads using the k-shortest path algorithm.  

 

Diaz-Banez et al. [39]  

Describes transportation of toxic wastes 

based on the continuous decision-based 

shortest route problem  

Facility Location and Facility Layout  

 

Dong et al. [40]  

Proposes a shortest path concept for a multi-

stage facility layout using the auction 

algorithm.   

  

Huang et al. [44]  
Provides useful information on getting the 

shortest route between two facilities using the  
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Manhattan-distanced heuristic algorithms   

 

Lee et al. [48]  

Gives a shortest path solution for multiple 

floor layouts using the Dijkstra’s algorithm.  

 

 

8. Conclusions 
 
This paper provides an overview of flow network notions which details network properties, and some 

problem definitions, while viewing the maximum flow aspects. It also presents a review of some 

important algorithms used to solve the maximum-flow problem such as the Ford and Fulkerson 

algorithm supplemented with an additional example to explain the algorithm. The max-flow min-cut 

theorem is presented in detail, the concepts behind it are analyzed, and some examples and their 

solutions are provided to demonstrate this theorem. Moreover, the paper explains the reduction and 

transformation methods used in a flow network as well as the decomposition technique which is one 

of the old and common techniques for analyzing capacitated systems. Some applications of flow 

network problems (including the maximum flow problem and the minimum routing problem) have 

been also discussed. 
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