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One of the key problems arises in binary logistic regression model is that 
explanatory variables being considered for the logistic regression model are 
highly correlated among themselves. Multicollinearity will cause unstable 
estimates and inaccurate variances that affects confidence intervals and 
hypothesis tests. Aim of this was to discuss some diagnostic measurements 
to detect multicollinearity namely tolerance, Variance Inflation Factor (VIF), 
condition index and variance proportions. The adapted diagnostics are 
illustrated with data based on a study of road accidents. Secondary data used 
from 2014 to 2016 in this study were acquired from the Traffic Police 
headquarters, Colombo in Sri Lanka. The response variable is accident 
severity that consists of two levels particularly grievous and non-grievous. 
Multicolinearity is identified by correlation matrix, tolerance and VIF values 
and confirmed by condition index and variance proportions. The range of 
solutions available for logistic regression such as increasing sample size, 
dropping one of the correlated variables and combining variables into an 
index. It is safely concluded that without increasing sample size, to omit one 
of the correlated variables can reduce multicollinearity considerably.  
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1. INTRODUCTION  17 

 18 
Binary logistic regression is used to model the relationship between dichotomous 19 

dependent variable and multiple independent variables which are either continuous or 20 
categorical. There are some assumptions under binary logistic regression which are required 21 
to satisfy to give a valid result [1]. 22 

 23 

 Linearity: Explanatory variables should have a linear relationship with the logit of the 24 
response variable.  25 

 Independent errors: Errors should not be correlated.  26 

 Multicolinearity: Explanatory variables should not be highly correlated with each other.  27 

 There should be no outliers, high leverage values or highly influential points.  28 
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One of the assumptions in logistic regression is explanatory variables should not be highly 29 
correlated with each other. The logistic regression model must satisfy the assumptions in 30 
order to valid the results. Unless model may have problems, such as unnecessarily inflated 31 
standard errors, spuriously low or high t-statistics, and parameter estimates with illogical 32 
signs and these problems may lead to invalid statistical inferences [2]. In experimental 33 
design, it may be possible to create situations where the explanatory variables are 34 
orthogonal to each other, but this is not true with observational data. Belsley [3] noted that: 35 
"... in nonexperimental sciences, ..., collinearity is a natural law in the data set resulting from 36 
the uncontrollable operations of the data-generating mechanism and is simply a painful and 37 
unavoidable fact of life." In many surveys, variables that are substantially correlated are 38 
collected for analysis. Shen & Gao [4] suggested a double penalized maximum likelihood 39 
estimator combining Firth’s penalized likelihood equation to stabilize the estimates in cases 40 
of multicollinearity. Azar [5] proposed a new method to estimate the shrinkage parameters of 41 
Liu-type logistic estimator. (Schaefer, Roi, & Wolfe, 1984) Schaefer, Roi & Wolfe [6] 42 
proposed  a ridge type estimator that have smaller total mean squared error than the 43 
maximum likelihood estimator under certain conditions.    44 

The aim of this study is to detect multicolinearity among the explanatory variables before 45 
making any statistical inference [7].  46 

 47 

2. MATERIAL AND METHODS  48 

 49 
Binary logistic regression model estimates the probability of occurrence of an event by fitting 50 
data to a logistic curve. The dependent variable is the population proportion or probability 51 
that the resulting outcome is equal to 1. Parameters obtained for the  explanatory variables  52 
can  be used to estimate odds ratios for each of the explanatory variables in the model. 53 
The specific form of the logistic regression model is:  54 
 55 

        
                    

                        
                                                                                  (1) 56 

 

57 

where π is the probability of the outcome of interest or event, β0 is the intercept, β1, …, βp are 58 
regression coefficients, x1,x2,…,xp are independent variables. 59 
 60 
The transformation of the conditional mean π(x) logistic function is known as the logit 61 
transformation:  62 
 63 

   
    

      
                                                                                          (2) 64 

 65 
The importance of the logit transformation is that it is linear in its parameters and may range 66 

from      to . 67 

 68 

2.1  Pearson Correlation Coefficient 69 

 70 
Usually we use Pearson’s correlation coefficient to measure the strength of the association 71 
between two variables. The general rule of thumb is that if correlation coefficient between 72 
two variables is greater than 0.8 or 0.9, the multicollinearity is a serious problem. Formula of 73 
sample correlation coefficient is described as follows.   74 
 75 
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r is sample correlation coefficient, n is sample size, xi, yi are  the individual sample points 77 
indexed with i,    is mean of x variable and    is mean y variable. 78 
 79 

2.2 Tolerance  80 

 81 

Furthermore, multicolinearity can mainly be detected with the help of tolerance and its 82 
reciprocal, called variance inflation factor (VIF). The tolerance is the percentage of the 83 
variance in a given predictor that cannot be explained by the other predictors.  84 
 85 
By definition tolerance of any specific explanatory variable is 86 
 87 
Tolerance = 1-R

2   
                              (4) 88 

 89 
where R

2
 is the coefficient of determination for the regression of that explanatory variable on 90 

all remaining independent variables. Tolerance close to 1 indicates that there is little 91 
multicollinearity, whereas a value close to zero suggests that multicollinearity may be a 92 
threat.  There is no formal cutoff value to use with tolerance for determining presence of 93 
multicollinearity [7]. Myers [8] suggests a tolerance value below 0.1 indicates serious 94 
collinearity problem and Menard [9,10] suggests that a tolerance value less than 0.2 95 
indicates a potential collinearity problem. As a rule of thumb, a tolerance of 0.1 or less is a 96 
cause for concern. 97 
 98 

2.3 VIF  99 

 100 
The VIF is defined as the reciprocal of tolerance as 101 

TOLERANCE
VIF

1
                      (5) 102 

 103 
VIF shows that how much the variance of the coefficient estimate is being inflated by 104 
multicollinearity.  Like tolerance there is no formal cutoff value to use with VIF for 105 
determining the presence of multicollinearity. Values of VIF exceeding 10 are often regarded 106 
as indicating multicollinearity, but in weaker models, which is often the case in logistic 107 
regression; values above 2.5 may be a cause for concern [7]. 108 
From equation (2), VIF shows us how much the variance of the coefficient estimate is being 109 
inflated by multicollinearity. The square root of VIF tells us how much larger the standard 110 
error is, compared with what it would be if that variable were uncorrelated with the other 111 
explanatory variables in the equation. Like tolerance there is no formal cutoff value to use 112 
with VIF for determining the presence of multicollinearity. Values of VIF exceeding 10 are 113 
often regarded as indicating multicollinearity, but in weaker models, which is often the case 114 
in logistic regression; values above 2.5 may be a cause for concern . 115 
 116 

2.4 Eigen values, condition index and variance proportions 117 
 118 

Moreover, eigen values for the scaled, uncentered cross-product matrix, condition indices 119 
and the variance proportions for each explanatory variable is used to identify 120 
multicollinearity.  If any eigen value is larger than others, then of the regression parameters 121 
can be greatly affected by small changes in the explanatory variables or outcome. If the 122 



 

4 
 

eigen values are fairly similar then the fitted model is likely to be unchanged by small 123 
changes in the measured variables [11].  124 
The condition indices are computed as the square root of the ratio of the largest eigenvalue 125 
to the eigen value of interest. It is defined as  126 
 127 

m a x

k

K



                                   (6) 128 

 129 
where λmax and λk are the maximum and the k

th
 eigen values respectively. When there is no 130 

collinearity at all, the eigen values, condition indices will equal unity. As collinearity 131 
increases, eigen values will be both greater and smaller than unity. If one or more of the 132 
eigenvalues are small (close to zero) and the corresponding condition number large, then we 133 
have an indication of multicollinearity. There is no hard and fast rule about how much larger 134 
a condition index needs to be indicated collinearity problems. An informal rule of thumb is 135 
that if the condition index is 15, multicollinearity is a concern; if it is greater than 30, 136 
multicollinearity is a very serious concern [7]. 137 
The variance of each regression coefficient can be broken down across the eigen values. 138 
The variance proportion explains the proportion of the variance of each regression 139 
coefficient that is attributed to each eigen value [7].  140 
 141 

2.5 Methodology 142 

 143 

The correlation coefficients among the explanatory variables are used as first step to identify 144 
the presence of multicollinearity. Then collinearity is checked using tolerance and VIF 145 
values. Then it is confirmed by using condition index, eigen values and variance proportions. 146 
Finally remaining variables are checked again whether there are correlations between them. 147 

 148 

 149 

2.6 Data 150 

 151 
Motorcycle accident data were used to evaluate diagnostic measurements. Secondary data 152 
used from 2014 to 2016 in this study which consists of 32926 accidents were acquired from 153 
the Traffic Police headquarters, Colombo in Sri Lanka. In this study, it is considered only the 154 
road accidents involved motorcyclists at fault. The response variable is severity of accidents 155 
which consists of two levels namely grievous and non-grievous accidents. Explanatory 156 
variables were accident cause, time, road surface, weather condition, light condition, age of 157 
motorcyclist and location. Except age of motorcyclist variable, other variables are 158 
categorical. Dummy variables are created for those categorical variables.  159 
 160 
 161 

3. RESULTS AND DISCUSSION 162 

 163 

Correlation matrix of highly correlated explanatory variables presented in Table 1. It 164 
illustrates that the correlation coefficients between variables light and time as well as road 165 
surface and weather are highly correlated with each other and indicated them as bold. These 166 
high correlation coefficients signify the presence of severe multicollinearity between the 167 
explanatory variables light condition and time of accident as well as road surface and 168 
weather condition. 169 
 170 
 171 
 172 
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               Table 1 : Pearson Correlation matrix between 2 explanatory variables 173 

Variables Time Weather 
Condition  

Light 
Condition 

Day Night  Clear Rainy Night, no 
Street Lighting 

Light 
Condition 

Daylight 0.971 
(0.000) 

-0.971 
(0.000) 

0.095 
(0.124) 

-0.095 
(0.124) 

-0.837 
(0.000) 

Night, no Street 
Lighting 

-0.862 
(0.000) 

0.862 
(0.000) 

-0.092 
(0.247) 

0.092 
(0.247) 

1.000 
(0.000) 

Road 
Surface 

Dry 0.088 
(0.164) 

-0.088 
(0.164) 

0.966 
(0.000) 

-0.966 
(0.000) 

-0.085 
(0.321) 

Wet -0.088 
(0.164) 

0.088 
(0.164) 

-0.966 
(0.000) 

0.966 
(0.000) 

0.085 
(0.326) 

  Cell value: correlation coefficient 174 
   p value 175 
 176 
Examining the correlation matrix may be helpful but not sufficient. It is quite possible to have 177 
data in which no pair of variables has a high correlation, but several variables together may 178 
be highly interdependent. Much better diagnostics are produced by tolerance and VIF 179 
values. Table 2 indicates the collinearity statistics.  180 
 181 
 182 

             Table 2: Collinearity statistics 183 

Variables  Categories Collinearity Statistics 

Tolerance VIF 

Gender Male .994 1.030 

Female .992 1.022 

Validity of license With license .945 1.023 

Without license .985 1.016 

Time Day time .045 19.456 

Night .050 20.181 

Weekday/Weekend Weekday .997 1.003 

Weekend .993 1.102 

Location  Bend/Junction .994 1.006 

Road .997 1.004 

Accident cause Speeding .971 1.030 

Aggressive driving .965 1.023 

Others .959 1.043 

Road surface Dry .059 15.457 

Wet .067 14.927 

Weather condition Clear .061 15.451 

Rainy .067 14.944 

Light condition Daylight .052 19.314 

Night, no street lighting .057 18.654 

Others .186 5.364 

Age Age .984 1.017 

 184 
Results of Table 2 observe that the high tolerances for the variables vehicle type, gender, 185 
validity of license, accident cause, alcohol test, weekday/weekend, location and age of driver 186 
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but very low tolerances for the variables time and light condition. Similarly, the variance 187 
inflation factor corresponding to the explanatory variables vehicle type, gender, validity of 188 
license, accident cause, alcohol test, weekday/weekend, location and age of driver are very 189 
close to 1, but for variables time and light condition, the VIF are larger than 2.5. Using these 190 
collinearity statistics, it can be concluded that the data almost certainly indicates a serious 191 
collinearity problem.  192 
 193 
The collinearity diagnostics are also checked to confirm the multicollinearity and displayed in 194 
Table 3. It can be seen that a large deviation in the final two factors, with the eigenvalue 195 
resulting very close to zero and the condition index resulting quite large in comparison. 196 
Furthermore, it is observed that the largest condition index is 28.641, which is beyond the 197 
range of our rules of thumb and indicate a cause for serious concern. According to the table 198 
3, variance in the regression coefficients of time and light condition is associated with eigen 199 
value corresponding to the dimension 11 and variance in the regression coefficients of 200 
surface and weather is associated with eigen value corresponding to the dimension 10 which 201 
clearly indicate dependency between the variables. Hence the result of this analysis clearly 202 
indicates that there is collinearity between light condition and time of accident as well as 203 
road surface and weather condition. This dependency results in the model becoming biased. 204 
 205 
 206 
                                                 Table 3: Collinearity diagnostics 207 
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1 4.550 1.000 .00 .01 .01 .01 .00 .01 .00 .00 .00 .00 .00 
2 1.841 1.572 .00 .00 .00 .00 .00 .00 .00 .02 .00 .02 .00 
3 1.090 2.043 .00 .01 .00 .01 .14 .03 .00 .00 .00 .00 .01 
4 1.005 2.128 .00 .00 .00 .00 .37 .78 .00 .00 .00 .00 .00 
5 .988 2.146 .00 .00 .00 .01 .10 .02 .00 .00 .92 .00 .00 
6 .877 2.278 .00 .00 .00 .01 .38 .09 .00 .00 .00 .00 .01 
7 .753 2.459 .00 .03 .03 .74 .00 .06 .00 .00 .00 .00 .00 
8 .688 2.572 .00 .00 .54 .02 .00 .28 .00 .00 .00 .00 .00 
9 .612 2.727 .00 .40 .26 .04 .00 .17 .00 .00 .00 .00 .00 
10 .033 11.828 .00 .50 .14 .15 .00 .05 .00 .97 .04 .96 .00 
11 .006 28.641 .98 .04 .01 .00 .00 .01 .96 .00 .00 .00 .94 

 208 
 209 

3.1 Solutions to Multicollinearity 210 

 211 
Once the collinearity between variables has been identified, the next step is to find solutions 212 
in order to remedy this problem. There are a few solutions to overcome this such that 213 
combining variables, increasing sample size, omitting highly correlated variables, ridge 214 
regression, and principal component analysis [12]. Since combining variables does not make 215 
sense and increasing sample size is not possible, here, we focus for the omitting highly 216 
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correlated variables. Any of the collinear variables could be omitted. There is no statistical 217 
ground for omitting one variable over another. Thus, first, time is removed from the data and 218 
repeat the analysis. However, collinearity still exists among the levels of light variable. Then 219 
time is added and light condition is removed and repeat the analysis. Moreover, weather 220 
condition is removed to reduce the multicollinearity between road surface and weather 221 
condition. Results are presented in Table 4.   222 
According to Table 4, tolerances for all the predictors are very close to 1 and all the VIF 223 
values are smaller than 2.5. Therefore, it can be concluded that multicollinearity is not a 224 
concern when one of the correlated variables is omitted. 225 
 226 
Collinearity diagnostics for the remaining variables are also checked and indicated in the 227 
Table 5. According to the Table 5, all the condition indices are lower than 15 and it can be 228 
concluded that multicollinearity is not a concern when one of the correlated variables is 229 
omitted. It can be seen that each explanatory variable has most of its variance loading onto 230 
a different dimension (validity of license  has 42% of variance on dimension 7, 231 
weekday/weekend has 77% of the variance on dimension 6, location has 78% of the 232 
variance on dimension 5, gender has 55% of the variance on dimension 3, accident cause 233 
has 65% of the variance on dimension 9, time has 65% of the variance on dimension 2, 234 
surface has 78% of the variance on dimension 4 and age has 56% of the variance on 235 
dimension 8). There were no such variables that have significantly high proportion of 236 
variances on the same small eigen value. This also indicates that multicollinearity is not a 237 
concern. 238 
 239 
 240 

  Table Error! No text of specified style in document.: Collinearity statistics 241 

for remained variables 242 

Variables  Categories Collinearity Statistics 

Tolerance VIF 

Gender Male .993 1.007 

 Female .992 1.022 

Validity of license With license .978 1.010 

 Without license .981 1.020 

Time Day time .980 1.028 

 Night .975 1.026 

Weekday/Weekend Weekday .997 1.003 

 Weekend .998 1.002 

Location  Bend/Junction .997 1.003 

 Road .998 1.004 

Accident cause Speeding .639 1.565 

 Aggressive driving .633 1.580 

 Others .638 1.560 

Road surface Dry .993 1.004 

 Wet .992 1.008 

Age Age .984 1.017 

 243 
 244 
 245 
 246 
 247 
 248 
 249 
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 250 
 251 
 252 
 253 
 254 
                        Table 5: Collinearity diagnostics for remaining variables 255 
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1 4.412 1.000 .00 .02 .01 .01 .00 .01 .02 .00 .01 
2 1.035 2.064 .00 .01 .00 .02 .21 .02 .65 .08 .00 
3 .981 2.121 .00 .00 .00 .00 .55 .01 .01 .08 .00 
4 .941 2.166 .00 .00 .01 .01 .18 .00 .00 .78 .00 
5 .754 2.420 .00 .04 .09 .78 .02 .00 .02 .02 .00 
6 .652 2.601 .00 .11 .77 .02 .00 .00 .09 .01 .00 
7 .572 2.777 .00 .42 .00 .00 .02 .00 .61 .02 .00 
8 .475 3.048 .01 .35 .09 .15 .02 .04 .20 .00 .56 
9 .133 5.766 .98 .00 .00 .00 .00 .65 .00 .00 .39 

 256 
Therefore, it can be safely concluded that multicollinearity is no more a problem to fit the 257 
binary logistic regression model. Hence the intensive analysis and fitting of the binary logistic 258 
regression model after minimizing the collinearity problems may produce stable and 259 
unbiased model to predict the outcome variable [7]. 260 
 261 
 262 

4. CONCLUSION 263 

 264 

One of the problems in binary logistic regression model typically arise is that 265 
explanatory variables of the logistic regression model are highly correlated among 266 
themselves. The problem of multicollinearity arises when one explanatory variable is not a 267 
linear function of another explanatory variable. The presence of multicollinearity specifies the 268 
biased coefficient estimates and very large standard errors for the logistic regression 269 
coefficients. Therefore, researchers always try to remove the multicollinearity among 270 
explanatory variables.  271 

The range of solutions available for logistic regression, such as omitting highly 272 
correlated variables, ridge regression, combining variables into an index, and increasing the 273 
sample size. Since combining variables does not make sense and increasing sample size is 274 
very expensive solution to multicollinearity, even though it gives a viable solution, we focus 275 
for the omitting highly correlated variables. It can be seen that multicollinearity is not a 276 
problem after omitting highly correlated variables. Hence, reliable and valid predictive logistic 277 
regression model can be built based on the adequate inspection and measures of remedy 278 
taken against multicollinearity. 279 
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