Radiological Risk Assessment of Drinking Water From Ignatius University Quarters, Rumuolumeni, Nigeria.

ABSTRACT

Aims: The aim of this study was to assess the level of natural radioactivity in drinking water (tap water) from Ignatius university staff guarters in order to determine the radiological health risks associated with consumption of such water. Study design: This study was purely an experimental work which involves collection of samples and laboratory analysis. Place and duration of the study: the study was carried out at Ignatius university staff guarters and some lecture halls within the institution between May 2018 and March 2019. Methodology: Twenty three (23) samples of drinkable water was collected from staff quarters and some lecture halls with 1.5 liters plastic containers which was rinsed thrice before collection. The samples were chemically treated by adding nitric acid and then pre-concentrated further by evaporating to certain levels. The residue were transferred to small cylindrical containers which were sealed and kept for 28 days in order to ensure secular equilibrium between ²³⁸u, ²³²th and their progenies and counted with sodium iodide activated with thallium detector. The results obtained were analyzed using some radiation models for radiological health risks. Results: The measured activity concentration of natural radionuclides such as ⁴⁰K, ²²⁶Ra and ²³²Th in drinking water were in the range of 4.14±3.61 to 48.30±3.88 Bql⁻¹, bdl to 188.51±2.69 Bql⁻¹ and bdl to 29.17±3.42 Bql⁻¹ respectively. The mean values of ⁴⁰K, ²²⁶Ra and ²³²Th are 18.79±4.24, 27.55±5.99 and 17.79 ±2.89 Bql⁻¹ respectively which is higher than their respective recommended safe value. The estimated effective dose for different age groups ranged from 0.073 to 317.58 mSvy⁻¹ for infants, 0.050 to 78.05 mSvy⁻¹ for children, 0.027 to 237.41 mSvy⁻¹ for teenagers and 0.029 to 51.46 mSvy⁻¹ for adults with mean values of 110.07, 25.92, 68.44 and 12.85 mSvy⁻¹ respectively. The lifetime fatality cancer risk to adult estimated show that, approximately 19 out of 100 may suffer from some form of cancer fatality and 18 out of 1000 may suffer some hereditary effect. **Conclusion**: The result showed an elevated radioactivity level with its associated health risk. The populace might be at long term health risk if continuous exposure is maintained.

Keywords: Radionuclide, Spectroscopy, lifetime cancer risk and hereditary effects.

1. INTRODUCTION

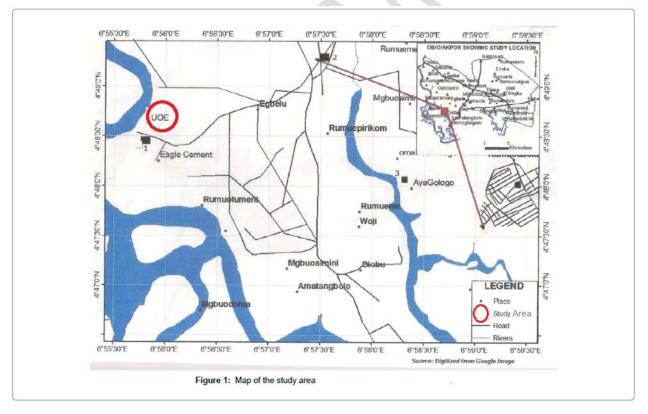
Life will not survive on earth without water. It is the most important resources to man after air [1]. Various sources of water exist but the most accessible is that which is readily available to individual community [1]. Ground water harnessed as dug or drilled well, boreholes, is the major source of water for homes and the entire university community of the study area. Many researchers have attested to the degree of ground water usage in Nigeria [2, 3, 4]. The study of Ononugbo et al., revealed the abundant potential of ground water resources in Nigeria. Yet more than half of the population of Nigeria (especially the Riverine dwellers) does not have

access to safe drinking water [5]. Humans are constantly exposed to some levels of environmental radiation. According United Nations Scientific Committee on the Effects of Atomic Radiation [6] about 87% of the radiation doses received by human are from natural sources while the remaining is due to anthropogenic radiation. The natural source can be terrestrial or cosmic. The cosmic sources include radiations from extra-terrestrial origin while the terrestrial sources naturally from air, water, soil, rocks and building materials. The knowledge of natural sources of background radiation is the most important and immediate concern to the general population [7].

Natural radioactivity has always been present and widely distributed in the earth's crust and the atmosphere, either as primordial radionuclides or uranium (²³⁸U) and thorium (²³²Th) decay series and radioactive potassium (⁴⁰K) or as cosmic radiations that are produced constantly in the atmosphere [7] in terms of radiation exposure, primordial radionuclide of ²³⁸U and ²³²Th decay series and ⁴⁰K which has extremely long half-lives of great concern due to their gamma ray emitting potential. The actual level of radiation caused by the radionuclide content of rocks and soil varies widely from place to place and the actual background radiation contributes to the external gamma dose rate at a given location which can be determined by measurement. The dose rate depends on the geological structure and geographical conditions and appears at different levels in the soil of each region of the world [8, 9, 10]. Higher radiation levels are associated with igneous rocks such as granite and lower level with sedimentary rocks; however, some shale's and phosphate rock have relative high content of radionuclide [11].

World Health Organization (WHO) [12] reported that several radioactive compounds are being released into the environment. These compounds find their way into drinking water supplies through human activities and human made source. Kelleher [13] reported that agricultural practices and industry are polluting the usable ground water. Literature also confirms varying concentration of radionuclides in our water body [14, 15]. Drinking water is one of the pathways to human exposure to radiation. The availability of clean water sources poses a problem to the present civilization and a concern to many researchers. Since water is essential to sustain life, a satisfactory supply must be available to all, and the primary interest of the World Health Organization to drinking water quality is to protect public health [16]. Improving access to safe drinking water can result in tangible benefits to human health [17]. Since water is an essential commodity to man, the quality of water ingested at every given time determine our health status, completely removing of radionuclide in our tap water before consumption, will probably reduce the cases of terminal diseases like cancer, cataract. The presence of radionuclide in drinking water poses health hazard when ingested into the body. Dumping of industrial, medical and domestic waste such as phosphogypsum, alum, shale's, scraps from oil and gas plant, waste from the hospital and discharge from nuclear fuel cycle, seepage can contaminate the soil, surface and underground water resources[18].

When water flows through rocks, soil cracked cement surrounding a water source; it can pick up radioactive materials, thereby contaminating the water source [19]. The predominant radionuclide found in water include radium (and its decay products), Uranium (and its decay products), radon (and its decay product), thorium (and its decay product). Natural radionuclide constitutes a treat to humans when ingested or inhaled in the body either through drinking water and food chain [20]. The effect can be chronic such as Terminal Diseases, Acute leucopenia,


anemia, cancer [21]. Therefore, this work centered on and measurement of radioactivity level in drinking water from the staff quarters and class room with the aim of quantifying its radiological health implication.

2. Materials and Methods

2.1 Study Area

Study Area

The study area is Ignatius Ajuru University of Education residential quarters and its environs situated at Iwofe, Rumuolumeni in Obio/Akpor Local Government Area, Port Harcourt, Rivers State, Nigeria. It is located at the central part of Niger Delta. The study area lies between latitudes 4°45'N and 4°60'N and longitudes 6°50'E and 8°00'E. It lies in the tropical wet climate zone, characterized by abundant rainfall with little dry season. The monsoon season occurs between April and October, bringing heavy rainfall ranging from 2000 to 2500 mm with temperatures up to 25°C and a relatively constant humidity. Rumuolumeni is generally a lowland area with average elevation below 30 meters above sea level. Its geology comprises basically of alluvial sedimentary basin and basement complex. The thick mangrove forest, raffia palms and light rainforest are the major types of vegetation. Due to high rainfall, the soil in the area is usually sandy or sandy loam. It is always leached, underlain by a layer of impervious pan.

Fig.1: Map of the study Area

Rumuolumeni axis of Port Harcourt play host to the eagle cement. The main operation of this industry involves the bulk importation of cement dust (clinker) through the new Calabar river, to

the jetty, the clinker will then be stored in the tank farms and then transferred into Jumbo bags into the mixing machine in the ware house for proper blinding of the clinker with the shale ash and adhesive to form cement nous product, from the mixing unit it goes to the bagging machine where the cement is package and ready to be distributed to industrial and domestic users. Throughout this process, there will be constant emission of Co_2 as waste to the environment. The processes of heating, blending of the raw materials together and bagging of the product, there will be continuous emission of dust as waste to the environment, since cement contains some level of iron, aluminates and silicate component when introduce into the environment as waste could degrade soil and underground water. Some of the operation takes place in ships berthed in the river thereby degrading the surface water, farming, fishing and general buying and selling activities also takes place.

2.3 Sample Collection and preparation

A total of 23 water samples were collected, twenty within the university campus and the other three were collected outside the campus to serve as a control measure. At each sampling point, plastic containers of 1.5 liters were rinsed three times with the water being collected to minimize contamination from the original content of sample container, the amount collected was such that an air space of about 1% of container capacity was created for thermal expansion. Before collection of water samples, the taps were first turned down to reduce turbulent flow and to reduce radon loss before collection. The water samples were immediately acidified with nitric acid (HNO₃) to reduce the pH and minimize the absorption of radioactivity into the walls of the container [22]. In the laboratory, water samples were turned into marinell beakers sealed and kept for one month, due to smaller life of the daughter radionuclide in the decay series of ²³²Th and ²³⁸U the ²³²Th activity was determine from the average activities of ²⁰⁸Ti at 583 Kev and ²²⁶Ac at 911 Kev in the samples and that of ²²⁶Ra was determined from the average activities of the decay product ²¹⁴Pb at 352 Kev and Bi at 609 Kev. The activity of ⁴⁰K was based on 1460 Kev peak [7].

2.3 Gamma Spectroscopy

A lead-shielded 76mm x 76mm Nal(TI) detector crystal (Model No. 802 series, Canberra Inc.) coupled to a Canberra Series 10 plus Multichannel Analyzer (MCA) (Model No. 1104) through a preamplifier was used for the radioactivity measurement. It has a resolution (FWHM) of about 8% at energy of 0.662 MeV (137Cs) which is considered adequate to distinguish the gamma ray energies of interest in the present study. The photon emitted by them would only be sufficiently discriminated if their emission probability and their energy were high enough, and the surrounding background continuum low enough. The samples were placed symmetrically on top of the detector and measured for a period of 10 hours. The net area under the corresponding peaks in the energy spectrum was computed by subtracting counts due to Compton scattering of higher peaks and other background sources.

After background correlation, the net area count in each photo peak was used to estimate the specific activity concentration of each of the radionuclide in the samples using the relationship.

$$A_s = \frac{Aa}{P\gamma E\gamma tc \frac{Ms}{Vs}}$$
 (Bq/kg)

Where A_s is sample concentration, A_a is net peak area of a peak at energy, E_{γ} is the efficiency of the detector $\frac{Ms}{Vs}$ is sample mass, P_{γ} is the abundance of gamma line in a radionuclide and t_c is total counting time. The specific activity concentrations of the parent nuclides were obtained using their daughter nuclide specific activity concentration assuming attainment of secular equilibrium within the period of storage. Background measurement and efficiency calibration of the system was made using ¹³⁷Cs and ⁶⁰Co standard sources from IAEA, Vienna, spectrum were accumulated for background for 29,000s at ⁹⁰⁰v to produce strong peaks at gamma emitting energies of ¹⁴⁶⁰Kev for ⁴⁰K, ⁶⁰⁹Kev of ²¹⁴Bi and all Kev of ²²⁸Ac.

3. Standard Radiological Risks Assessment

Standard radiation hazard indices were used to evaluate the effects of radiation doses on the health of humans that are exposed to natural environmental radiation through ingestion and inhalation [23]. The indices to be evaluated are discussed below.

The annual effective dose from ingestion of radionuclide in water samples was estimated on the basis of the mean activity concentration of the radionuclides. This was done for different age brackets. In this work the intake rates and dose conversion factors for the radionuclides based on the International commission on radiological protection [20] publication are used as presented in Table 1.

The annual effective dose from ingestion of ground water was computed by the following equation [21].

(2)

$$H_{ing}(w) = \sum DCF_{ing}(i)x A_{spi} x I$$

DCF_{ing} is dose conversion coefficient of a particular radionuclide ith in Sv/Bq for a particular age category, Aspi is the specific activity concentrations of radionuclide ith in the water samples in Bq/I and I is radionuclide intake in litres per year for each age category.

In addition to the estimated annual effective dose, the cancer and hereditary risk due to low dose without any threshold dose known as stochastic effect were estimated using the ICRP cancer risk model [24]. Radiation risk to population result from exposure to low dose radiation are normally known as chronic risk of somatic or hereditary damage of human tissues, thus much emphasis is always placed on the reduction of these radiological risks to natural radiation.

The nominal lifetime risk coefficient of fatal cancer recommended in the 2007 recommendations of the ICRP for members of the public is $5.5 \times 10^{-2} \text{ Sv}^{-1}$. For hereditary effects, the detriment adjusted nominal risk coefficient for the whole population as stated in ICRP [24] for stochastic effects after exposure at low dose rates is estimated at $0.2 \times 10^{-2} \text{ Sv}^{-1}$.

The risk to population was then estimated using the recommended risk coefficient in ICRP report and assumed 70 years lifetime of continuous exposure of population to low level radiation. According to the ICRP methodology:

Hereditary Effects = Total annual Effective Dose (Sv) x hereditary effect factor (4)

S/N	Radioisotope	Infant ≤ 1yr	Children (1-12yr)	Teenage 17)	(12- Adult ≥ 17yr
1	²²⁶ Ra	4.7 E-06	6.2 E-07	1.5 E-06	2.8 E-07
2	²³² Th	3.0E-05	3.4 E-06	5.3 E-06	6.2 E-07
3	⁴⁰ K	6.2 E-08	2.1 E-08	7.6 E-09	6.2 E-09
	Annual water consumption	182.5 L	365 L	547.5 L	730 L

Table 1: Committed Effective Dose Conversion Factor (Sv/Bq) for members of the Public [24].

4. Result and Discussion

The measured activity concentration of natural radionuclides such as ⁴⁰K, ²²⁶Ra and ²³²Th in drinking water were in the range of 4.14±3.61 to 48.30±3.88 Bql⁻¹, BDL to 188.51±2.69 Bql⁻¹ and BDL to 29.17±3.42 Bql⁻¹ respectively. The mean activity concentration values ⁴⁰K, ²²⁶Ra and ²³²Th are 18.79±4.24, 27.55±5.99 and 17.79±2.89 Bql⁻¹ respectively as presented in Table 2. The variation in the activity concentrations of ⁴⁰K, ²²⁶Ra and ²³²Th observed in these samples indicate that their origins are not the same and that they came from different depths and pass through different geological layers. Likewise this irregular distribution of activity concentrations of the selected nuclides in the water may depend on their contents in rocks and may strongly depend on the physical and chemical properties of each water sample.

Comparing the results obtained in this work with results of other similar works, the activity concentration of ⁴⁰K, ²²⁶Ra and ²³²Th in drinking water were higher than that obtained in Cameroon mineral water by Ndontchueng *et al.*, [15]. The mean activity concentration of ⁴⁰K obtained in this study were lower than the activity concentration of ⁴⁰K, in dam reservoir water obtained by Inikunle *et al.*, [15] but the mean activity concentration of ²²⁶Ra and ²³²Th (27.55±5.99 and 17.79±2.89 Bql⁻¹) obtained in this work were higher than that obtained from dam water (9.00±3.34 and 7.13±2.63) by Inikunle *et al.*,[25]. This could be due to differences in their sources or origin which depends on the geological component of the area. The mean activity concentration of ²²⁶Ra and ²³²Th in all the water samples are above the guidance level which was adopted from the WHO [12] water quality guidelines. Guidance level was not established for ⁴⁰K. It is known to be evenly distributed in the body; metabolic balance maintains its concentration in the body irrespective of the amount ingested [2, 1].

The highest activity concentration of ²²⁶Ra (188.51±2.69 Bql⁻¹) was recorded at AIT₂ which corresponds to staff quarter very close to Cement bagging industry and a large waste dump site. This might have contributed to very high value obtained. The mean activity concentration of ²²⁶Ra (27.55±5.99 Bql⁻¹) obtained is higher than the mean values of ⁴⁰K and ²³²Th (18.79±4.24 and 17.79±2.89 Bql⁻¹). This implies that this wide range of ²²⁶Ra concentration is in relation to

the geological structure and to the characteristics of the areas. The geological formation of the area is known to be associated with high concentrations of radionuclides [26]. Ground water exhibits various forms of radionuclides that vary extensively in concentrations due to varying geology and disjointed aquifers. The chemical nature of radionuclide is another factor that influences the disparity in the concentration of radionuclide in ground water [1]. Anthropogenic impacts on the study area environment are other factor traceable to the elevated level of radionuclides. Ground water pollution of the study area arising from a point and non-point sources has been reported in literature[27].

Rumuolumeni play host to cement re-bagging industry and many oil and gas servicing companies. Its proximity to a multinational oil and gas company subjects it to massive population explosion. The aftermath is rapid urbanization, and increased waste generation. Therefore industrial and domestic waste management is a problem in the area of study which makes ground water prone to pollution. High concentration of nuclides are inevitable in the area because most boreholes are shallow and are liable to surface contamination[26].

S/N	LOCATION	Specific Activity Concentration (Bqkg ⁻¹)						
		⁴⁰ K	²²⁶ Ra	²³² Th	Raeq (Bqkg⁻¹)			
1	AIT ₁	12.21±5.32	15.41±3.85	17.87±2.54	41.90			
2	AIT ₂	10.65±3.73	188.51±2.69	28.45±3.08	230.01			
3	AIT_3	9.31±4.05	34.08±2.08	20.59±1.45	64.24			
4	AIT ₄	38.04±4.60	20.81±4.98	18.69±3.06	50.47			
5	AIT₅	10.42±4.31	29.17±4.31	29.17±3.42	71.69			
6	AIT ₆	9.31±5.80	12.78±4.29	18.98±3.12	40.64			
7	AIT ₇	6.47±2.79	BDL	15.97±3.30	23.34			
8	AIT ₈	14.36±5.54	34.08±2.46	9.74±2.94	49.11			
9	AIT ₉	24.62±3.21	34.90±2.24	13.36±3.95	55.90			
10	AIT ₁₀	11.18±2.75	14.41±3.45	26.69±3.45	53.44			
11	AIT ₁₁	48.30±3.67	9.50±3.36	23.57±2.32	46.92			
12	AIT ₁₂	6.47±3.68	BDL	BDL	0.50			
13	AIT ₁₃	47.51±4.25	24.25±3.12	BDL	27.91			
14	AIT ₁₄	32.52±5.29	28.35±2.54	13.26±2.67	49.82			
15	AIT ₁₅	48.30±3.88	16.06±2.94	9.19±3.12	32.92			
16	AIT ₁₆	21.15±5.18	37.36±2.94	9.19±3.12	52.13			
17	AIT ₁₇	1.74±4.25	12.13±3.85	23.7±3.16	46.15			
18	AIT ₁₈	14.36±5.54	34.08±2.46	9.74±2.94	49.11			
19	AIT ₁₉	10.79±3.12	13.34±2.58	23.7±3.16	48.06			
20	AIT ₂₀	14.89±5.97	14.42±4.00	23.98±2.16	49.86			
21	AIT ₂₁	7.26±2.86	61.94±4.01	26.14±2.16	99.88			
22	AIT ₂₂	4.14±3.61	13.34±4.01	24.65±3.43	48.91			
23	AIT ₂₃	26.20±3.95	3.77±1.85	22.75±2.94	38.32			
	AVERAGE	18.79±4.42	27.55±5.99	17.79±2.89				

 Table 2: Specific Activity Concentrations of Radionuclide in Various Sampling Locations

 and its Radium Equivalent.

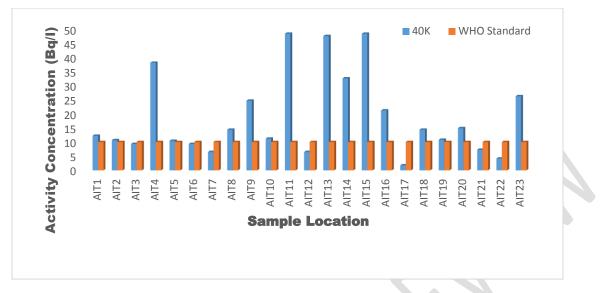


Fig. 2: Comparison of activity concentration of ⁴⁰K with WHO standard

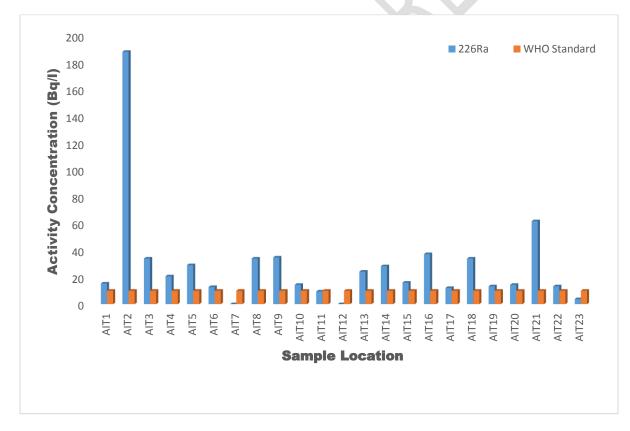


Fig. 3: Comparison of activity concentration of ²²⁶Ra with WHO standard



Fig. 4: Comparison of activity concentration of ²³²Th with WHO Standard

S/N	Location	Total Annual effective dose (mSvy ⁻¹)				Cancer Risk and Hereditary Effect in Adult			
		E Infant	E Child	E Teen	E Adult	FCR X 10 ⁻⁴	LFCR x 10 ⁻²	SHE x 10 ⁻ ₅	ELHE x 10 ⁻³
1	AIT ₁	111.19	25.76	64.56	11.29	6.21	4.35	2.26	1.58
2	AIT ₂	317.58	78.05	237.41	51.46	28.30	19.81	10.29	7.20
3	AIT ₃	142.07	33.34	87.77	16.33	8.98	6.29	3.27	2.29
4	AIT ₄	120.61	28.20	71.48	12.89	7.09	4.97	2.58	1.80
5	AIT_5	184.84	42.88	108.64	19.21	10.57	7.40	3.84	2.69
6	AIT ₆	114.98	26.52	65.61	11.25	6.18	4.40	2.25	1.57
7	AIT ₇	87.51	19.86	46.37	7.26	3.99	2.79	1.45	10.16
8	AIT ₈	82.72	19.91	56.31	11.44	6.29	4.40	2.29	1.60
9	AIT ₉	103.36	24.67	67.53	13.29	7.31	5.12	2.66	1.86
10	AIT ₁₀	158.61	36.47	89.33	15.08	8.29	5.80	3.02	2.11
11	AIT ₁₁	137.74	31.77	76.40	12.83	7.06	4.94	2.57	17.96

 Table 3: Annual Effective doses for different Ages and Estimated Cancer risks and Hereditary Effects on Adult member of the Public

12	AIT ₁₂	0.07	0.05	0.03	0.03	0.02	0.01	0.58	4.10
13	AIT ₁₃								
14	AIT ₁₄	21.34	5.85	20.11	5.17	2.84	1.98	1.03	0.07
		97.28	23.12	61.90	11.94	6.57	4.59	2.38	1.17
15	AIT ₁₅	64.64	15.41	40.06	7.66	4.21	2.94	1.53	1.07
16	AIT ₁₆	82.6	20.02	57.44	11.89	6.54	4.58	2.37	1.67
17	AIT ₁₇	02.0	20.02	57.44	11.03	0.54	4.50	2.57	1.07
		140.18	32.17	78.74	13.21	7.27	5.09	2.6	1.85
18	AIT ₁₈	82.72	19.91	56.311	11.44	6.29	4.40	2.28	1.60
19	AIT ₁₉	4 4 4 . 0 0	00.54	70 77	40 5	7.40	5.00	0.70	1 00
20		141.32	32.51	79.77	13.5	7.43	5.20	2.70	1.89
20	AIT ₂₀	14.38	33.14	81.49	13.86	7.63	5.34	2.77	1.94
21	AIT ₂₁	196.33	46.51	126. 75	24.524	13.49	9.44	4.90	3.43
22	AIT ₂₂	146 49	22 6 4 4	92 501	12.0		E 25	2 70	
23		146.48	33.641	82.501	13.9	7.65	5.35	2.78	1.95
23	AIT ₂₃	128.09	29.28	69.22	11.18	6.15	4.31	2.24	1.57
	Mean	110.07	25.918	68.435	12.85	7.07	4.95	2.57	1.80

The total annual effective dose due to ingestion of the sampled drinking water was estimated for different age groups including infants, children, teenagers and adults considering their dose conversion factors and annual ingestion rate of water as presented in Table 1 and using equation 2. The estimated effective dose for different age groups ranged from 0.073 to 317.58 mSvy⁻¹ for infants, 0.050 to 78.05 mSvy⁻¹ for children, 0.027 to 237.41 mSvy⁻¹ for teenagers and 0.029 to 51.46 mSvy⁻¹ for adults with mean values of 110.07, 25.92, 68.44 and 12.85 mSvy⁻¹ respectively. The result of total annual effective dose as presented above compared well with literature according to UNSCEAR [28]. Their report revealed that infants and children are more sensitive to radiation than adults and oftentimes are prone to higher radiation risks. They also affirmed radiation risks variability in children at different age groups especially in cancer induction. The age dependent factors that contribute to variation in radiation effects and risks includes: size of individual and organs; growth patterns of the individual and tissues; intake and absorption of radiation; metabolic rates and physical activities among others [28].

The high total annual effective dose is due to high activity concentration of ²²⁶Ra and ²³²Th with major contribution from ²³²Th. It contributed 88.54% of the mean total annual effective dose for infants (≤ 1 yr), 85.23 % for children (1-12 yrs), 75.47% for teenagers (12-17 yrs) and 62.69 % for adults (≥ 17 yrs). Percentage contribution of ²²⁶Ra to the mean total annual effective dose was 22.1 % , 24.8 %, 34.1% and 47.1 % for infants, children, teenagers and adults respectively. The doses obtained in this present work are higher than the recommended reference levels and from radiation protection point of view, life-long consumption of the investigated water may pose significant radiological health risk.

In order to evaluate the radiation risk in adults due to ingestion of ⁴⁰K, ²²⁶Ra and ²³²Th in drinking water, the ICRP methodology was adopted and the result shown in Table 3. The results of the

cancer and non-cancer risk components were evaluated from the estimated annual effective dose of the sampled water. The results of the evaluated fatal cancer risk to adult per year in each drinking water ranged from 0.02×10^{-4} to 28.30×10^{-4} with the associated lifetime fatality cancer risk of 0.01×10^{-2} to 19.81×10^{-2} . The evaluated lifetime hereditary effect to adult per year varied from 0.58×10^{-5} to 10.29×10^{-5} with the associated lifetime hereditary effect in adult of 0.07×10^{-3} to 17.96×10^{-3} .

This means that the lifetime fatality cancer risk to adult approximately 19 out of 100 may suffer from some form of cancer fatality and for the hereditary effect approximately 18 out of 1000 may suffer some hereditary effect. The negligible cancer fatality risk value recommended by USEPA [29] is in the range of 1.0×10^{-6} to 1.0×10^{-4} (ie 1 person out of one million or 10,000 suffering from some form of cancer fatality is considered trivial). Comparing the estimated results of the lifetime cancer risk in the present study with the acceptable risk factor, all estimated results of the lifetime fatality risk in adult member of the university population due to ingestion of radionuclides in the sampled water are higher than the range of acceptable risk values recommended by USEPA.

The lifetime fatality cancer risk to adult and its associated hereditary effects obtained in this study was higher than that obtained by Maxwell et al.,[30] and Ibikunle et al., [25]. This variation can be linked to high radionuclides contents in this present study environment. Different geological formation of the study area can also be a contributing factor. High levels of ²³⁸U and ²³²Th series in drinking water increases the risk of certain cancers in the body [31]. ICRP [24] stated that ingested radionuclides are absorbed in the blood stream and accumulate in specific tissues causing damage. Cells in kidney and bladder are irradiated when radionuclides are excreted in urine [32]. Hence adequate measures that will alleviate the high radiation risk associated with drinking water from the sampled tap water should be adopted.

5. Conclusion

Radiological risk assessment of drinking water from Ignatius University quarters has been determined using gamma ray spectrometer. The mean activity concentration of ⁴⁰K, ²²⁶Ra and ²³²Th obtained in this study are 18.79±4.24, 27.55±5.99 and 17.79±2.89 Bql⁻¹ and are higher than the recommended reference safe values. The annual effective dose estimated for different age groups showed that infants that ingest the sampled water are at higher risk than other age groups. The estimated lifetime cancer risk in adult member of the institution's population due to ingestion of radionuclides in the sampled water are above the range of the acceptable risk values recommended by US EPA. This is indicative that there is high radiation risk in drinking the tap water sampled. Therefore, it is strongly recommended that these ground water should be treated especially for ²³²Th whose contribution resulted in the increased risks. Also further research on the trend of radionuclides in other environmental media of the study area should be investigated.

References

- [1] Justina Ada Achuka, Usikalu Mojisola Rachael and Oyeyemi Kehinde David Radiological Risks assessment of Ogun state drinking water. *American Journal of Applied Sciences.* 2017;14(5): 540-550.
- [2] Alausa, S.K. Fasunwon O.O. and Odunaike, K. Activity and corresponding mass concentration of 40K and 238U inwell waters from Ago-Iwoye, Ogun state, Nigeria. J. Natural Sci. Res. 2014; 4:1-5.
- [3] Bajwa, B.S. Kumar, S. Singh, S. Sahoo, S.K. and Tripathi, R.M. Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. *J.Radiation Res. Applied Sci. 2015; 10:1-9*
- [4] Agbalagba, E.O., Gregory O. Avwiri, Yehuwdah E. Chad-Umoren. Gross alpha and beta activity concentration and estimation of adults and infants dose intake in surface and ground water of ten oil fields environment in Western Niger Delta of Nigeria. J. Appl. Sci. Environ. Manag. 2013; 17(2)267-277
- [5] Orebiyi, E.O., Awomeso, J.A.; Idowu O.A. Martins, O. and Oguntoke, O. Assessment of pollution hazards of shallow well water in Abeokuta and environs, Southwest, Nigeria. *Am. J. Environ. Sci*, 2010; 6:50-56
- [6] UNSCEAR, United Nations Scientific Committee on effects of Atomic Radiation Report to the General Assembly, Vol. 1, Sources and effects of Ionizing Radiation (New York: United Nations) 2000.
- [7] Chandrashekara, M. S., Veda, S. M. and Paramesh, 1. Study on Radiation Dose Due to Radioactive Elements Present in Ground Water and Soil Around Mysore City, India. Radiation Protection Dosimetry, 2012;149: 315-320.
- [8] Abusini, M., Al-ayasreh, K. and Al-Jundi, J. Determination of Uranium, Thorium and Potassium Activity Concentrations in Soil Cores in Araba Valley, Jordan. *Radiation Protection Dosimetry*.2007; 128 (2):213-216.
- [9] Matiullah, A., Ur-Rehman, S., Ur-Rehman, A. and Feheem, M. Measurement of Radioactivity in the Soil of Behawalpur Division, Pakistan. *Radiation Protection Dosimetry*. 2004;112 (3): 443-447.
- [10] Nwankwo H.O and Walter I.O. Assessment of Groundwater quality in Shallow Coastal Aquifer of Okirika Island, Eastern Niger Delta Nigeria Ife . Journal of Science, 2012;14(2): 21-29
- [11] Tzortis, M.a nd Tsertos, H. Determination of Thorium, Uranium and Potassium Elemental Concentration in Surface Soils in Cyprus. *Journal of Environment and Radioactivity.2004; 77: 325-338.*
- [12] WHO .Guidelines for drinking water quality. 1st Edition, World Health Organization, Geneva, 2011; ISBN-10:9241541687 p.465.
- [13] Keleher S. New study reveals how much ground water remains. Earth Space Sci. News 2015; DOI:10.1029/2015E0040089.
- [14] Rachkova, N.G. and Shuktomova I.L. U and Th distribution in podzolic soil contaminated with soluble compounds of these elements. Geochem. Int. 2015; 53:182-189
- [15] Ndontchueng M.M., Simo A., Nguelem, E.J.M. Beyala, J.F. and Kryeziu . Preliminary study of Natural Radioactivity and Radiological Risk Assessment in some Mineral Bottled water Produced in Cameroon. *International Journal of Science and Technology*, 2013; 3(12):372 – 377

- [16] Ononugbo, C. P. Avwiri G. O, Egieya, J. M. Evaluation of natural radionuclide content in surface and ground water and excess lifetime cancer risk due to gamma radioactivity. *Academic Research International.2013*; 4(6): 636-647.
- [17] World Health Organization (WHO). Guidelines for drinking water quality in cooperating First Addendum 1, Recommendations, (2008).3rd edition Radiological Aspect Geneva: World Health organization
- [18] Ugbede, F.O : Measurement of background ionizing Radiation Exposure levels in selected farms in communities of Ishielu L.G.A, Ebonyi State, Nigeria. *Journal of Applied Science Environmental Management.* 2018; 22(9) 1427-1483.
- [19] Ajayi, J.O., Adedokun and Balogun, B.B. Levels of Radionuclide contents in stream waters of some selected Rivers in Ogbomoso land, south west Nigeria. *Radiation Protection Dosimetry 2012; 128(4): 477-484.*
- [20] Ononugbo, C.P. and Nwaka B.U. Natural radioactivity and radiological risk estimation of drinking water from Okposi and Uburu salt lake area, Ebonyi state, Nigeria. *Physical Science International Journal.* 2017;15(3): 1-15.
- [21] Avwiri, G. O., Egieya, J. M. and Ononugbo, C. P. Radiometric Assay of Hazard Indices and Excess Lifetime Cancer Risk Due to Natural Radioactivity in Soil Profile in Ogba/Egbema/Ndoni Local Government Area of Rives State, Nigeria. Academy Research International. 2013; 4(5).: 27-35.
- [22] ICRP. The 2007 Recommendations of the International commission on radiological protection. Annals of ICRP. 2007, Publication 103.
- [23] Ibikunle S.B., Ajayi, O.S., Arogunjo, A.M. and Salami, A.A. Radiological assessment of Dam water and sediments for Natural Radioactivity and its overall Health detriment. *Ife Journal of Science 2016; 8(2):551-559.*
- [24] ICRP, Annals of the ICRP (ICRP Publication 119). Compendium of Dose Coefficients Based on ICRP Publication 60. Volume 14 Supplement 1.
- [25] Olurin, O.T. Badmus, B.S., Akinyemi, O.D. Olowofela, J.A. and Ozebo V.C. Analysis of physical parameters of limestone deposits in Ewekoro formation, Southwestern Nigeria. *Earth Sci. Res. 2012;1:117-121.*
- [26] WHO World Health Organization. Meeting the MDG Drinking Water and Sanitation Target. The Urban and Rural Challenge of the Decade, WHO, New York, 2006.
- [27] Nwankwo H.O and Walter I.O. Assessment of Groundwater quality in Shallow Coastal Aquifer of Okirika Island, Eastern Niger Delta Nigeria Ife . Journal of Science, 2012; 14(2): 21-29
- [28] UNSCEAR. Sources, effects and risks of ionizing radiation. UNSCEAR, 2013 Report to the General Assembly with Scientific Annexes.
- [29] US-EPA. Edition of the Drinking Water Standards and Health Advisories. 2012, EPA 822-S-12-001. Washington DC.
- [30] Maxwell, O. Wagiran, H. Lee, S.K. Embong, Z. and P.E. Ugwuoke. Radioactivity level and toxic elemental concentration in ground water at dei-dei and Kubwa areas of Abuja, North central Nigeria. *Radiation phys. Chem.*, 2015; 107:23-30.
- [31] Colorado Health and Environmental Assessment. Physical environment: water 2013: CHEA.

[32] Kuttio, P.L.Salonen, T. Ilus, J. Pekkanen and Pukkala et al., well water radioactivity and risk of cancers of the urinary organs. *Environ. Res., 2006; 102:333-338.*

UNDER PERMIT