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Abstract 
 
Nitric oxide is one of the important modulators of arterial tone. It is still unclear 

whether arterial stiffness depends upon NOS3 gene polymorphism in intron 4. The aim 

of this observational study was to test an association of central hemodynamic and 

arterial distensibility with VNTR 4b/a NOS3 gene polymorphism determined by PCR, 

in Caucasian population.  

The routinely ascertained tonometry data were studied by pulse wave analysis using 

SphygmoCor device in 61 healthy Russian miners (27 women) aged 27–65 years and 

residing in middle Kola Peninsula (68 degrees N).  

Paired comparisons showed that male BB homozygotes had lower values of 

augmentation pressure (p=.005), and higher brachial-to-aortic pulse pressure 

amplification (p=.002) than A allele carriers (AB and AA genotypes). These associations 

remain significant after adjusting for age, heart rate, and systolic blood pressure in 

multiple regression analysis. Female AB carriers had higher aortic systolic blood 

pressure (p=.046) and lower subendocardial viability ratio (p=.049) compared to 

homozygous BB subsample.  

Individuals carrying A allele thus have stiffer conduit arteries and seem to be at higher 

risk for cardiovascular diseases. 

 
 
Key words: NOS3 gene; VNTR polymorphism; arterial stiffness; pulse wave analysis; 

central hemodynamics 
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1. Introduction 
 

The synthesis of endothelium-derived NO from L-arginine is catalyzed by 

endothelial nitric oxide synthase (NOS3) which is encoded by highly polymorphic 

NOS3 gene located in the 7q35–7q36 region of chromosome 7. A variety of studies 

have evaluated the association between NOS3 gene polymorphisms and risk of fatal 

cardiovascular events and nonlethal disorders in different populations [1–3], and 

inconsistent results have been obtained. From one hand, an association has been 

observed [4–11]. From the other hand, the link could not be found in several studies 

[12,13]. 

The variable number of tandem repeats (VNTR) in intron 4 of this gene relates to 

adverse cardiovascular phenotypes in various populations with some exceptions [9,14]. 

In the majority of papers, the presence of rare A allele and especially homozygous AA 

genotype has been found to be a risk factor for the vasculogenic erectile dysfunction 

[15] and cardiovascular diseases [16, 17] but this is not the case for Sudanese [18], 

Iranian [19], Greek [20], Chilean [10], and Siberian native [21] populations. No 

difference could be observed in arterial flow-mediated dilation and the response to 

glyceryl trinitrate between A allele carriers and BB homozygotes [22]. Cardiovascular, 

renal, metabolic parameters and forearm responses to acetylcholine have been found to 

be homogeneously distributed across b/a genotypes [23]. These results demonstrate 

population- and ethnic-dependent inconsistency in existed reports on association 

between 4b/a genotypes and cardiovascular phenotypes. 

The contribution of genetic polymorphisms to the variance of arterial 

distensibility phenotypes has been addressed in many studies [24,25]. Although 

associations between arterial stiffness and genetic variants at the NOS3 locus have been 

established in various populations [9,12,24,26–29,30], the VNTR 4b/a polymorphism is 

still not among the genotypes studied in this context. In the present population-based 

observational study we hypothesized that VNTR 4b/a NOS3 gene polymorphism 

associates with central hemodynamics and elastic properties of conduit arteries. 

 

2. Subjects and Methods 
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2.1. Cohort Details 
 

The study population consisted of 60 apparently healthy normotensive 

nonsmoking Russian individuals of Caucasoid race (27-65 years, 28 women, 51 were 

born in Kola Peninsula). They worked at underground loparite mine in the middle Kola 

Peninsula (68 °N) and were examined in winter during regular yearly medical 

inspection. All participants provided written consent to participate in the study. The 

protocol was approved by the Ethical Committee of the Institute of Physiology. 

2.2. Cardiovascular Phenotypes 
 

Non-invasive measures of arterial stiffness and wave reflection were assessed in 

sitting position of participants as previously described for this sample [31, 32]. The 

following phenotypical traits were routinely ascertained by applanation tonometry and 

pulse wave analysis with use of SphygmoCor device (AtCor Medical, Australia): values 

of brachial and central systolic (SBP), diastolic (DBP), mean blood pressure (MBP) and 

pulse pressure (PP), aorta-to-brachial pulse pressure amplification (PP Ampl, 

%=PPbrachial / PPaortic ×100), augmentation pressure (AP) and augmentation index 

(AIx@75, corrected to HR=75 beats/min), left ventricular ejection duration (ED) and 

time to reflective wave (Tr). The latter two timing parameters were expressed as 

percentage of the length of cardiac cycle. As described elsewhere, higher AP, AIx [33] 

and lower Ampl [34] and time to reflective wave [35] indicate greater arterial stiffness. 

The Buckberg subendocardial viability ratio (SEVR) was calculated as percentage of 

diastolic pressure-time integral/systolic pressure-time integral ratio and was considered 

a measure of myocardial O2 demand/supply ratio. 

2.3. Details of the SNP Studied 
 

Genomic DNA was isolated from the venous blood using standard protocol and 

commercial kit (BioSilica, Novosibirsk) in the Genetic Laboratory at the Institute of 

Neurosciences and Medicine.  

The polymerase chain reaction with two primers  NOSF 

GCTGGAGGAGGGGAAAGAAGTCTAGA and NOSR 

CGCTCAAGCTGTCCTCACCCCCG was performed in a total volume of 25 µL using 
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BioRad CFX96 amplificator with the following amplification protocol: initial 

denaturation (95 °C for 2 min) followed by 38 subsequent cycles of denaturation (95 °C 

for 30 s each), annealing (56 °C, 40 s), elongation (72 °C, 2 min), and terminal cycle 

(72 C° for 5 min). The intron 4 b/a VNTR NOS3 genotypes were then determined using 

12 % polyacrylamide gel electrophoresis. The following PCR products were identified 

in the gel: the single fragment of 163 pn (4 b/b homozygote), the single fragment of 136 

pn (a/a homozygote) and the site with both fragments (b/a heterozygote). 

 

2.4. Statistical Analysis 
 

Since the AA genotypic subsample consisted of three individuals only, it was 

grouped together with the AB carriers and analyzed by paired comparing with 

homozygous (BB) subsample. The phenotypic traits were then comparatively examined 

for genotype differences via Mann-Whitney test. Univariate analysis of variance and 

multiple linear regression analysis (GLM option) were performed by using SPSS-19 

package (IBM, USA) to ascertain relationships between phenotypic variables and 

genotypes after adjustment for covariates that are known to influence tonometric 

parameters (age, systolic blood pressure, and heart rate). A value of p≤.05 was 

considered  a significant difference but the value  ≤.1 was also indicated to note a 

suggestive effect. Tonometric data were expressed as median and 25th and 75th 

percentiles. 

 

3. Results 
 

For both sexes, no significant differences in age, BMI, and HR were observed 

between two genotypes compared (Table 1). The BB male carriers had lower AP, AIx 

values and higher PPAmpl and hence more compliant peripheral arteries compared to A 

allele containing carriers. In women, the differences reached borderline level of 

significance for SBP and SEVR. In the sex-pooled analysis, the differences are 

significant for PP Ampl and AP in favor of BB genotype. These results report on the 

harmful effect of A allele on tonometric parameters in both sexes. For men, the genotype 

effect remains statistically significant after adjusting for age, HR, and SBP (Table 2) 
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and explains 27.2% (p=0.026), 16.8% (p=0.034), and 21.3% (p=0.020) of AP, AIx and 

PPAmpl variances, respectively, in multiple regression analysis. Other phenotyping 

variables did not reach borderline level of significance while controlling the effects of 

these confounding factors. 

 

4. Discussion 
 

This study evaluated relations of NOS3 gene intron 4 polymorphism with several 

tonometric measures of hemodynamics and arterial elasticity and found that 

homozygosity for the major (B) allele was associated in men with reduced augmentation 

pressure and increased aorta-to-brachial pulse pressure amplification, i.e. with 

compliant conduit arteries. Women with this genotype had greater SEVR, i.e. better 

diastolic myocardial perfusion than their counterparts carrying the minor (A) allele. 

The harmful effect of A allele, found in the present work, on tonometric measures 

is in consistence with studies having linked this allele with adverse cardiovascular 

phenotypes. Thus, the A allele frequency has been found to be high in Systemic Lupus 

Erythematosus patients [36] and in persons with coronary artery disease and ischemic 

stroke [15,37]. However, conflicting data have been reported in the literature regarding 

the association of this allele with hypertension [13,38] and end-stage renal disease [39]. 

The present study thus adds indirect evidence to the set of data indicating the 

association between the minor VNTR allele and adverse cardiovascular phenotypes in 

view of arterial distensibility. However, the literature existed does not allow making 

definite conclusion on the cardiovascular effect of the described genetic locus. Gamil 

and co-authors [18] consider it unlikely that the VNTR itself has a functional role in the 

development of essential hypertension as it lies in intronic region and seems to act as a 

marker for other functional variants elsewhere in the gene. 

The wild-type B/B homozygosity for NOS3 intron 4 VNTR was found in 37 

(60.7%) subjects and A/B allele combination presented in 24 (39.3%) [40]. The authors 

could not find an association of 4 b/a polymorphism with hypertension in type 1 

diabetes. 

The results obtained here are suggestive for modest relations between VNTR 

variant within intron 4 at the NOS3 locus and arterial stiffness and allow suggesting that 
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A allele might negatively determine either quantity, i.e. expression, or activity of NO 

synthase itself or other substances involved in the regulation of the arterial tone and/or 

elasticity, i.e. smooth muscle contractility or molecular structure of extracellular matrix. 

However, it seems unlikely that there is a specific major genetic factor determining 

arterial stiffness that exceeds all other known vascular risk factors probably mainly 

because of multiple causality of arterial rigidity and its weak  association with an 

individual gene or allele.  

To the best of our knowledge, there are no data in scientific literature on the 

genetic determinants of vascular properties in northern residents. Two papers by Fould 

et al. [41,42] report on the high vascular distensibility, assessed by pulse wave velocity, 

in native inhabitants of the Canadian North. The low prevalence of arterial hypertension 

and metabolic syndrome among the aboriginal northerners [43,44] despite the 

predominance of fatty foods in their diet allows suggesting the compliance of peripheral 

arteries in Arctic Aboriginals compared to residents of mid-latitude regions. 

Limitations. Unfortunately, this research does not answer the question of whether 

the established gene-vascular phenotype association is a general phenomenon or is 

characteristic feature of the northern inhabitants and whether the BB genotype is 

selected by the specific northern environment. The appropriate answer needs a 

comparative investigation. 

Since the present study is exploratory, additional researches of larger sample size 

to confirm these findings are warranted. 

 

5. Conclusions 
 

This study established the relation of NOS3 gene intron 4 polymorphism 

with several tonometric measures of central hemodynamics and arterial elasticity 

and found that homozygosity for the major (B) allele was associated in men with 

reduced augmentation pressure and increased aorta-to-brachial pulse pressure 

amplification, i.e. with compliant conduit arteries. Women with this genotype 

had greater SEVR, i.e. better diastolic myocardial perfusion than their 

counterparts carrying the minor (A) allele. It is concluded that individuals carrying 

A allele seem to be at higher risk for cardiovascular diseases. 
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Table 1. Physical characteristics and parameters of central hemodynamics and arterial 

compliance in healthy individuals by sex and 4b/4a NOS3 genotype 

 

Parameter 
Genotypes 

P (Mann-
Whitney) b/b a/b + a/a 

Men N=18 N=12+2  

Age, years 36.0 (30.0-57.0) 49.5 (39.1-59.0) .077 

BMI, kg/m2 25.7 (23.4-28.6) 25.3 (23.3-30.2) NS 

HR, bpm 80.5 (73.3-87.0) 75.5 (67.5-85.3) NS 

SBP, mmHg 116.0 (106.3-121.0) 118.5 (111.3-129.5) NS 

DBP, mmHg 88.0 (82.5-93.5) 87.0 (81.8-92.5) NS 

MBP, mmHg 100.0 (95.8-105.8) 101.5 (92.0-108.0) NS 

PP, mmHg 26.5 (21.5-33.5) 32.0 (23.8-40.8) NS 

PPAmpl, % 170.5 (141.3-179.5) 143.5 (115.8-159.3) .002 

ED, % 37.0 (33.8-38.3) 35.0 (32.5-40.3) NS 

Tr, % 19.1 (18.1-21.4) 17.8 (15.0-21.1) NS 

aAP, mmHg 0.00 (–1.25-5.00) 5.50 (1.75-15.3) .005 

aAIx, % 5.5 (–1.0-21.8) 16.5 (5.8-26.8) .081 

SEVR, % 156.5 (141.5-168.5) 164.5 (132.8-172.8) NS 

Women N=18 N=9+1  

Age, years 44.0 (28.3-57.3) 49.0 (27.8-56.3) NS 

BMI, kg/m2 25.3 (23.0-29.7) 31.4 (24.6-33.7) NS 

HR, bpm 74.0 (69.8-78.0) 76.5 (67.8-82.5) NS 

SBP, mmHg 116.5 (106.0-123.3) 124.0 (109.5-138.5) .049 

DBP, mmHg 83.5 (75.8-91.5) 84.0 (77.8-91.3) NS 

MBP, mmHg 99.0 (89.8-105.3) 102.5 (96.1-112.0) NS 

PP, mmHg 30.5 (24.8-34.0) 34.0 (25.0-51.3) NS 

PPAmpl, % 133.0 (120.8-160.5) 128.5 (119.5-148.0) NS 

ED, % 36.6 (35.5-37.3) 38.5 (35.3-41.3) NS 
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Tr, % 16.6 (15.0-19.7) 17.4 (14.8-18.8) NS 

aAP, mmHg 7.5 (4.3-10.3) 10.0 (4.8-15.5) NS 

aAIx, % 25.0 (16.8-32.8) 30.0 (16.0-35.5) NS 

SEVR, % 153.0 (145.1-170.2) 133.5 (129.0-162.3) .049 

Both sexes N=36 N=21+3  

Age, year 39.1 (30.3–57.7) 49.0 (37.0-58.8) NS 

BMI, kg/m2 25.3 (23.6–29.2) 26.5 (24.0-32.3) NS 

HR, bpm 76.0 (70.3–84.5) 76.5 (68.3-83.5) NS 

SBP, mmHg 116.0 (107.0–122.8) 120.5 (112.2-131.4) .094 

DBP, mmHg 86.0 (78.5–93.0) 85.0 (81.3-91.0) NS 

MBP, mmHg 100.0 (94.0–104.8) 102.1 (92.3-111.8) NS 

PP, mmHg 29.5 (23.3–34.0) 32.4 (25.1-42.3) NS 

PPAmpl, % 153.0 (130.5–172.8) 134.4 (118.5-158.0) .019 

ED, % 37.0 (34.3–38.0) 37.0 (33.5-41.0) NS 

Tr, % 18.4 (15.7–20.6) 17.8 (15.1-20.0) NS 

aAP, mmHg 5.01 (0.02–8.04) 7.10 (4.18-14.50) .030 

aAIx@75, % 21.5 (4.3–27.3) 22.5 (12.5-30.8) NS 

SEVR, % 154.5 (144.5–168.5) 156.5 (131.3-167.8) NS 

 
Values are expressed as median (25th–75th percentiles). BMI, body mass index; HR, 

heart rate; SBP, DBP, MBP, PP, aortic systolic, diastolic, mean, and pulse blood 

pressure; PPAmpl, aorta-to-brachial pulse pressure amplification; ED, ejection duration; 

Tr, time to reflection; aAP, aortic augmentation pressure; aAIx, aortic augmentation 

index; SEVR, subendocardial viability ratio. NS, not significant. P-values ≤ 0.1 are 

indicated only, those in boldface are significant, P≤.05.  
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Table 2. Results of univariate analysis of variance and multiple regression (GLM) 

between augmentation pressure, augmentation index, pulse pressure amplification 

(continued dependent variables), age, heart rate, systolic blood pressure (covariates), 

and 4b/4a NOS3 genotype (fixed factor, two categories, bb and ab+aa genotypes) in 

healthy men (N=32) 

 

Source of variation F p 
Partial Eta squared 

(corrected R2) 

Standardized 

β 

Dependent variable: Augmentation pressure 

Corrected model 21.6 <.001 0.824 – 

HR 8.96 .006 0.280 –0.318 

Age 6.07 .022 0.209 0.292 

SBP 9.35 .006 0.289 0.403 

NOS3 genotype 4.28 .026 0.272 0.351 

Dependent variable: Augmentation index  

Corrected model 14.2 <.001 0.532 – 

Intercept 8.6 .007 0.256 – 

SBP 12.0 .002 0.324 0.546 

NOS3 genotype 5.0 .034 0.168 0.395 

Dependent variable: Pulse pressure amplification 

Corrected model 23.77 <.001 0.806 – 

Intercept 53.2 <.001 0.698 – 

HR 11.5 .003 0.333 0.323 

Age 9.00 .006 0.281 –0.322 

SBP 11.00 .003 0.323 –0.392 

NOS3 genotype 6.2 .020 0.213 –0.371 
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