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ABSTRACT 

Fluid-flood and other improved oil recovery techniques are becoming prominent in global petroleum production 

because a large proportion of production is from mature oil fields. Although water flooding and gas injection are 

well established techniques in the industry, several of the screening criteria in literature are discipline which 

could sometimes be subjective. This work used experimental design techniques to develop proxy models for 

predicting oil recovery under water-flood and gas-flood conditions. 

The objective of the study is to develop a quantitative screening method that would allow for candidates to be 

evaluated and ranked for water flood or gas injection. The model was applied to some field cases and compared 

with published models and the well-known Welge Analysis method.The results show that the proxy models 

developed are quite robust and can be used for first pass screening of water and gas flood candidates. 
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1. Introduction 

Improved oil recovery comprises any of the various methods apart from the primary recovery method (reservoir 

drive mechanism) designed to improve the flow of hydrocarbons from the reservoir to the wellbore; it is the 

second stage of hydrocarbon production during which an external fluid such as water or gas is injected into the 

reservoir through injection wells located in rocks that has fluid communication with the production wells. Many 

researchers have performed laboratory studies to show that CO2 injection is a very effective enhanced oil 

recovery process for light and medium gravity reservoir oils (Willhite, 1998).  Shtepani (2007) discussed PVT 

experiments, special coreflood experiments and numerical coreflood simulations to determine the micro-scale 

conformance of the CO2 displacement and identify CO2 breakthrough characteristics. He gave serious attention 

to the importance of water injection and other factors related with CO2 injection, which could extend the 

miscible CO2-EOR technology to a broader range of oil reservoirs. He concluded that an accurate EOS 

characterization and phase behavior of reservoir fluids, based on extensive PVT measurements was key for a 

successful design. 

According Alvarado and Manrique (2010) improved oil recovery methods compass enhanced oil recovery 

methods as well as new drilling and well monitoring technologies, intelligent reservoir management and control, 

advanced reservoir monitoring techniques as well as application of different enhancements of primary and 

secondary recovery processes.  
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Several methods are available in assessing recoveries; for example laboratory/core analysis as well as intelligent 

well systems; this research will focus on the use of Design of Experiment and Response surface methodology.  

Unlike primary recovery, IOR techniques are technically and economically intensive and require proper 

planning. This method has been extensively applied in assessing production uncertainties in channelized 

reservoirs (Friedman et al., 2001) and creating development strategy alternative for Oil fields.  (Carreras et al., 

2006)focused on the Tahiti field in deepwater Gulf of Mexico with primary hydrocarbon-bearing turbidite 

sands. Due to significant uncertainties remaining after appraisal, probabilistic methods were used to assess 

development alternatives.  They applied the classical ED method to generate reservoir simulation models for the 

P10, P50 and P90 reservoirs of the field. The field development was done by performing ED runs which 

incorporated uncontrollable uncertainties and decisions as factors such as well counts and injection timing. 

This method was used to manage subsurface uncertainties in the Niger Delta by Ogbalor and Peacock (2010). 

They concluded that experimental design provides a systematic consistent approach to managing uncertainties in 

field development studies because it reduces the amount of time and cost needed to analyse the impact of a 

range of subsurface parameters on business decisions. Separate response surface model should be generated for 

in-place as well as recoverable volumes, as the key sub-surface parameters which drive each model are likely to 

be different. 

Reis (2006) applied the Experimental Design and Response Surface Methodology in Risk analysis, where one 

RSM was built to model the decision variable and another was built to represent an objective function that takes 

into account dynamic data. A relationship among the uncertainty variables obtained from the RSM of the 

objective function was applied to the RSM of the decision variable to constrain the model, enabling Risk 

analysis with history match. The results obtained were compared with that of an Artificial Neural Network 

(ANN). 

Gupta et al (2008) presented a statistical method for performing history matching using experimental design 

framework. The objective of the experimental design based history matching was to independently quantify 

ultimate recovery for the studied field based on the production history, primarily water production and pressure 

matches. Their method quantifies the probability for each scenario based on identified history matching 

parameters. This methodology can easily be extended to include differential weights for history matching 

parameters. The success of the method depends on the generation of efficient design and subsequent model for 

acceptable modeling error  

Cebastiant and Osbon(2011) presented a comparison between the Experimental Design method and the simpler 

and quicker Monte-Carlo  probabilistic technique used to manage subsurface uncertainty and provide estimates 

of hydrocarbon in-place and ultimate recovery. Some case studies were used to illustrate this and they  

concluded that ED tend to produce  a wider ultimate recovery distribution compared to the probabilistic because 

the ED has a tendency to introduce more dependencies between input variables. These dependencies occur as a 

result of minimizing the simulation runs by combining multiple uncertainties. It was also realized that ED 

handled the dependencies on recovery factor more thoroughly than the probabilistic method.  



 

 

Robertson, (2006) discussed laboratory works showing examples of improved recovery from low salinity water 

floods. He tried to quantify the improved oil recovery potentials from low-salinity waterfloods for specific 

fields. In his conclusion, he showed that oil recovery tended to increase with lower salinity floods.   

Li and Friedmann, (2005) introduced a new method to effectively generate a response surface although, the 

input parameters have strong non-linear effects; the results showed that this method could successfully generate 

a response surface when the non-linear effects are normally distributed. 

2. Methodology 

Pareto chart and Placket Burma design were used to identify the nine imputed factors, and validation was done 

using Yale’s Algorithms: 
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Using 20 experiments, a response surface was built using linear Equations (Equation 2) to describe the 

relationship between the recovery factor and the identified factors (Myers et al., 2008).  
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The fluid proxy models obtained were validated using secondary data: seven cases for the water flooding, and 

four casesfor the gas injection problem. The results were compared with the Guthrie and Greenberger (1955) 

Predictive model (Equation 3)and ….. Buckley Leverett/ Welge analysis method (Equation 4 and 5) 

)3..(11403.00003488.0538.1)log(1355.025569.0)log(2719.0  hSkE owir   

𝑅𝐹𝑜𝑖𝑙 =
(𝑆𝑤 𝑎𝑣 − 𝑆𝑤𝑖 )

(1 − 𝑆𝑤𝑖 )
                                                                                                                                     (4) 

𝑅𝐹𝑔𝑎𝑠 =
(𝑆𝑔 𝑎𝑣 − 𝑆𝑔𝑖 )

(1 − 𝑆𝑔𝑖)
                                                                                                                                   (5) 

3. Results and Discussion 

The principal factors that affect each process were identified: Water-floodable Pore volume; Absolute 

Permeability; Capillary Pressure; Reservoir Pressure; Reservoir Depth; Fluid viscosity; hydrocarbon in Place at 

start of flood; Connate water saturation; Effective permeability measured at the immobile connate water 

saturation; Relative permeability; fluid saturation at start of flood; formation volume factor; injection rate and 

Pressure. 

For the water-flood case; the proxy model generated is given by the equation: 

𝑅𝐹𝑜𝑖𝑙 = 𝐴0 + 𝐴1𝑊𝑃𝑉 + 𝐴2𝐾 + 𝐴3𝑃𝑟 + 𝐴4𝑆𝑤𝑐 + 𝐴5𝜇𝑂 + 𝐴6𝜇𝑊 + 𝐴7𝐾𝑟𝑜  𝑠𝑤𝑟  + 𝐴8𝑆𝑂 + 𝐴9𝐵𝑂

+ 𝐴10𝐼𝑤                                                                                                                                      (6) 
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For the gas injection under conditions of miscible flooding in non-dipping reservoirs; the proxy model generated 

is given by the equation: 

𝑅𝐹𝑔𝑎𝑠 = 𝐵0 + 𝐵1𝐺𝑃𝑉 + 𝐵2𝐵𝑂 + 𝐵3𝐼𝑔 + 𝐵4𝑃𝑖𝑛𝑗 + 𝐵5𝑆𝑔𝑖 + 𝐵6𝑁 + 𝐵7𝑆𝑜𝑖 + 𝐵8𝑆𝑂 + 𝐵9𝑃              (7) 

Where the constants are as shown in Table 1 below: 

Table 1: Showing the constants and values for the Proxy Model 

 

 

 

 

 

 

 

Table 2: Results obtained using case studies (Water- Flooding) Recovery Factor (Fraction) 

 

From Table 2 it can be seen that Buckley Leverett/ Welge Analysis over-estimates recovery factor; this is 

because it considers recovery factor as a function of displacement efficiency only, areal and volumetric 

efficiencies are not accounted for. It can also be seen that the recovery factor and cumulative oil Produced 

follow the same trend in all cases; at high viscosities and water saturation, there is a close correlation between 

the recovery factor using Guthrie and Greenberger Water-Flood Predictive model and Buckley-

Leverett/Welge’s Analysis. It can also be observed that all cases apart from Case 1, 2 and 7, the cumulative oil 

produced in MMSTB calculated, predicted and obtained are close for the other cases. 

Table 3: Results obtained using case studies for Gas injection  (Recovery Factor ) 

Case This Study Guthrie and Greenberger Buckley Leverett/Welge Analysis 

1 0.05 0.01 0.33 

2 0.03 0.03 0.4 

3 0.07 0.07 0.31 

4 0.05 0.01 0.34 

 

Constant Value Constant Value 

A0 -0.8051 B0 0.18565 

A1 2.6519E-07 B1 -9.1385E-07 

A2 -3.171E-06 B2 0.0434 

A3 1.5834E-06 B3 -0.00061 

A4 -0.01943 B4 4.497E-06 

A5 0.000217 B5 3.566 

A6 0.0005 B6 -2.234E-06 

A7 0.00649 B7 -0.1320 

A8 1.493 B8 -1.2471 

A9 0.0139 B9 -3.8694E-07 

A10 -2.34E-08   

Case Study Guthrie and 
Greenberger model 

Buckley Leverett/Welge 
Analysis 

Study database 

1 0.05 0.53 0.6 0.06 
2 -0.02 -0.21 0.56 -0.05 
3 0.19 0.38 0.45 0.42 
4 0.12 0.18 0.49 0.18 
5 0.131 0.27 0.38 0.089 
6 0.5 0.66 0.43 0.15 
7 0.16 0.22 0.15 0.07 



 

 

4. From Table 3, it can be observed that Buckley Leverett/Welge’s Analysis predicts high recoveries; as 

stated earlier; recovery factor is a function of displacement efficiency only though the Cumulative Oil 

Produced follows the same trend as the other cases; it can also be seen that there is a close correlation 

between the recovery factors and Cumulative Oil Produced. 

These key parameters such as reservoir heterogeneity, dip, mobility ratio of the CO2 to oil, injection 

rate, volume of CO2 available affect performance of the recovery process and the nature of the 

reservoir fluids (Ifeanyichukwu et al., (2014). Proxy models were generated for the primary recovery 

and water flood oil recovery from the simulation results and Monte Carlo simulation was run using the 

proxy equations (Liu et al., 2008). 

 

Figures 1 and 2 shows the recovery factors in fraction against the different cases under consideration 

for both water flooding and gas injection. Buckley Leverett method stands out in  the gas injection but 

was not very distinct in the water flooding scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Plot of Recovery Factor (fraction) Versus Case Studies (Water-Flooding) 
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Figure 2: Plot of Recovery Factor (fraction) Versus Case Studies (Gas Injection) 

Figure 3 shows the Pareto chart that indicates the main factors that affect oil originally in Place (OOIP),  the 

relative permeability to oil and oil formation volume factor stands out clearly to affect the recovery process. 

 

Figure 3: Pareto Chart for OOIP  

5. Conclusion 

Recovery factor of any improved oil recovery process can be expressed as a function of reservoir rocks and fluid 

properties; this function can be used to predict recoveries before extensive simulations are done. Design of 

Experiment and Response Surface Methodology can be used with a high degree of accuracy to predict oil 

recovery factors. 

ABBREVIATIONS/NOMENCLATURE 
ANN  Artificial Neural Network 

DOE  Design of Experiment 
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RSM   Response Surface Methodology 

IOR  Improved Oil Recovery 

EOR  Enhanced Oil Recovery 

PVT  Pressure Volume Temperature 

ED  Experimental Design 

EOS  Equation of State 

BWPD  Barrels of Water per day 

MMSTB Million Stock tank barrels 

MMSCF  Million Standard Cubic Feet 

BSCF  Billion Standard Cubic Feet 

K  Permeability 

Ø  Porosity 

µ  Viscosity 

h  Formation Thickness 

S  Saturation 

RF  Recovery Factor 

P  Pressure 

PV  Pore Volume 

B  Formation Volume Factor 

OOIP  Original Oil In Place 

 

Subscripts 

o  Oil 

w water 

g gas 

I initial 

Wc connate water 

av Average 
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