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Abstract 

A rotating beam at varying speed mathematical model is studied. Multiple time scales 

method is applied to the nonlinear system of differential equations and investigated the 

system behavior approximate solution in the instance of resonance case. We studied the 

system in case of applying the delayed control on the displacement and the velocity with 

Proportional–derivative (PD) controller. The consistency of the steady state solution in the 

near-resonance case is reviewed and analyzed using the Routh-Huriwitz approach. The 

factors on the steady state solution of the various parameters are recognized and discussed. 

Simulation effects are obtained using MATLAB software package. Different response curves 

are involved to show and compare controller effects at various system parameters. 

Keywords Non-linear dynamical system, multiple time scales method, active feedback 

controller, time delay 

1 Introduction 

In dynamical and structural structures, disturbances and complex instability are always 

undesired phenomena. These systems face nonlinear vibrations for numerous purposes, such 

as materials' nonlinear properties, geometric nonlinearities, and nonlinear powers of 

excitation. Much time, money and efforts are spent on minimizing these systems' vibrations 

and oscillations for longer life and preventing them from failure or damage. 

 Many scholars and scientists have paid attention to and attempted to alleviate this topic 

that affects equipment, industry, and frugality. The high amplitude nonlinear vibration 

activity of a revolving cantilever beam is treated by Thomas et al. [1], with applications for 

turbo machinery and turbo-propeller blades. The effect of rotation speed on the nonlinear 

vibrations of the beam and particularly on the hardening/softening behaviour of its 

resonances and the occurrence of high amplitude jump phenomena were investigated. A new 

dynamic model of a rotating flexible beam with a condensed mass positioned in an arbitrary 

location, based on the absolute nodal coordinate formulation, was investigated by Zhang et 

al. [2]. They found that both the magnitude and the direction of the condensed mass impact 

the normal frequencies and the mode shapes. Aeroelastic analysis of a spinning wind turbine 

blade was conducted by Rezaei et al.[3] by considering the effects of geometrical 

nonlinearities associated with large blade deflection created during the operation of the wind 

turbine. Through applying the concepts of quasi-steady and unsteady airfoil aerodynamics, 
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they proposed an aerodynamic model based on the strip theory. The results showed that 

geometrical nonlinearity, especially for larger structural deformations, had a significant 

impact. The effect of rotation velocity on nonlinear resonances is considered in[4], and the 

multi-scale perturbation approach is used and solved in the von Kármán[5] model. In order 

to simulate nonlinear resonances via a one-mode Galerkin expansion, nonlinear beam models 

such as axial inertia and nonlinear curvature are used. Nonlinear resonance curves are also 

computed, based on a Galerkin discretization with Legendre polynomials and a continuity 

process, with a completely numerical approach (harmonic balance coupled to an asymptotic 

numerical technique). For more detailed and effective dynamic analysis of a rotating 

cantilever beam with elastic deformation defined by partial integro-differential equations 

with non-Cartesian deformation variables, Kim and Chung[6] suggested a nonlinear model. 

They showed that the proposed model not only provided good numerical precision and 

efficiency, but also overcome the constraints expressed by Cartesian variables of a previous 

traditional nonlinear model. The dynamics of a structure consisting of a rotating rigid hub 

and a thin-walled composite beam with an embedded active part were introduced by Latalski 

[7]. Based on the device rotation velocity and laminae fiber orientation angle, they studied 

natural mode shapes and electrical field spatial distribution. A Proportional Derivative (PD) 

controller was applied by Kandil, H. El-Gohary [8] to research the effects of time delay on 

its output to decrease the oscillations of a spinning beam at different speeds. Although the 

vibrational modes of the dual system are linearly coupled, the controller is applied to only 

one mode and the other coupled mode tracks it. In the case of the worst resonance cases that 

were verified numerically, they regulated the device. Yao et al. [9, 10] applied the theory and 

isotropic constitutive law of Hamilton in order to infer the beam's governing equations. Of 

supersonic gas flow and high temperature, they studied the dynamics at different speeds. 

Choi et al.[11, 12] showed that an active damping effect can be obtained with polyvinylidene 

fluoride (PVDF) sensors and macrofiber composite (MFC) actuators through a negative 

velocity feedback control algorithm. MFC is a composite form of piezoelectric material. 

Through the required arrangement and distribution scale of the sensor/actuator pair, ample 

vibration suppression efficiency would therefore be obtained. 

The system of nonlinear differential equations with and without time delay that 

describes a rotating beam at varying speeds shown in Figure 1a [8,9, 10] has been studied in 

this paper in order to reduce its oscillations and enhance its efficiency. The displacements of 

the blade cross section are measured by using MFC sensors that are distributed over the 

bottom surface of the blade, as shown in Fig. 1b. The measured signals will be sent back to 

the computer to analyze and compute the appropriate control signal as shown in Fig. 1c. 

Once the control signal is calculated, it is passed through conditioning circuit and then be 

applied to the embedded MFC actuators that are distributed over the top of the blade so that 

they can modify the blade position and reduce its vibration, a control loop feedback 

mechanism illustrated in figure 2 are continuously calculates an error value e(t) as the 

difference between a desired setpoint (SP) and a measured process variable (PV) and applies 

a correction based on proportional, integral, and derivative terms (denoted P, I, 

and D respectively).This article is organized as: analytical solutions for the second order 

nonlinear differential equations that described the system are derived using the multiple time 

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
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scales method [5, 13] in Section 2, while a numerical Results and brief discussions are given 

in Section 3. Finally a brief conclusion is given in Section 4. 

 

 
 

(a) (b) 

 

(c) 

Figure 1 Rotating compressor blade model, (a) thin-walled pre-twisted blade, (b) sensors and actuators distribution and (c) 

block diagram of control process. 

 
Figure 2 A closed loop system controller. 

2 System model and mathematical analysis 

The mathematical model for the system shown in figure 1 is given in [5] as: 

2 2 3

1 1 1 1 13 2 11 2 5 1 2 5 1 14 1

2 2

14 1 16 1 1 2 1

2 2 cos( )

cos ( ) sin( ) ( ) ( ),
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   

       

        

  

            (1a) 
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cos ( ),

oX X X X X X X X f f X t
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       

 

  
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where 1 2,X X  are the horizontal and vertical displacements of the blade cross section, 1 2, 

are the damping parameters of the system modes, 11 21 13 22, , , ,    are the coupling factors 

between the system modes, 5 is the cubic nonlinearity factors between the system modes,

14 24,  are the parametric excitation parameters, ,of f are constant and variable rotating 

speed,  is the excitation frequency, 1 2,k k are the proportional and derivative feedback 

gains, and  is the time delay. 

Applying (MTSM) and scaling the previous parameters as:

11 11 13 13 14 14 16 16 21 21 22 22 24 24 5 5

1 1 2 2 1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

ˆ ˆ ˆ ˆ, , , .k k k k

               

     

       

   
       

(2) 

The second order approximation of 1 2,X X  is given by as stated in power series form as: 

2

1 1 10 1 11 1

2

2 1 20 1 21 1

2

1 1 10 1 11 1

( , , ) ( , ) ( , ) ( ),

( , , ) ( , ) ( , ) ( ),

( , , ) ( , ) ( , ) ( ),

o o o

o o o

o o o

X T T X T T X T T O

X T T X T T X T T O

X T T X T T X T T O 

  

  

     

  

  

    

                                                 (3) 

where the time derivative will takes the values: 
2

2 2 2

0 1 0 12
( ) , 2 ( )o

d d
D D O D D D O

dt dt
                                                                     (4) 

and , , 0,1n

n n

n

T t D n
T




  


. 

Applying equations (2)-(4) into (1) at and equating same power of  coefficients to obtain: 

 
0( )O  :

2 2

10( ) 0oD X                                                                                                       (5a) 

2 2

20( ) 0oD X                                                                                                                 (5b) 

( )O  : 

2 2

11 14 10 0 0 16 0

2 3

0 1 10 1 0 10 13 0 20 11 20 5 10 20 5 10

1 10 2 0 10 1 10 2 0 10

ˆ ˆ( ) cos( )[2 cos( )] sin( )

ˆ ˆ ˆ ˆˆ2 2

ˆ ˆ .

o oD X f X T f f T f T

D D X D X D X X X X X

k X k D X k X k D X 

  

    

       

     

   

                         (6a) 

 
2 2

21 24 20 0 0 0 1 20 2 0 20

2 3

22 0 10 21 10 5 20 10 5 20

ˆ ˆ( ) cos( )[2 cos( )] 2 2

ˆ ˆ ˆ ˆ .

o oD X f X T f f T D D X D X

D X X X X X

  

   

      

   
              (6b) 

It is well known that solutions of (5a), (5b) are  

0

0

0

10 1

20 1

( )

10 1

( ) .,

( ) .,

( ) .,

i T

i T

i T

X A T e cc

X B T e cc

X A T e cc





 

 



 

 

 

                                                                                                    (7) 
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Using Taylor expansion, then the value of 1( )A T  is given by   

1 1 1 1( ) ( ) ( ) ( )A T A T A T A T          . As approximation, we keep only the first term 

of this expansion, then,  
0( )

10 1( ) .,
i T

X A T e cc
 




   

where .cc  represents the complex conjugates of the preceding terms and A, B are complex 

functions of
 1T . 

Now we will study the system worst operating modes due to resonance cases. 

 

Case 1 Primary resonance: 

The primary resonance occur when the value of   is equal to   so we study the 

behavior of the system near this case i.e. 

1 1
ˆ        ,                                                                                                         (8) 

Combining Eq. (7) and (8) into (6) and eliminating all secular terms, we obtain: 

1

1

22
214

1 11 13 5 5

2

5 16 1 2

( ) 2 2 2 3
2 2

0.5 0,

i t

i t i i

f e
A A i A i A B i B ABB A A

B A i fe k A e i k A e



  


      

   

      

     


                    (9) 

 

122
2 224

2 21 22 5 5 5( ) 2 2 2 3 0
2 2

i tf e
B B i B i B A i A ABA B B A B


               

(10) 

Converting ,A B to the polar form then we have: 

1

2

1

2

,
2

2

i

i

a
A e

a
B e









                                                                                                                           (11) 

where , , ( 1, 2)j ja j  are the system amplitude and phase respectively. 

Introducing Eq. (11) in Eqn. (9) and (10) and equating the real and imaginary parts we get: 
2

13 2 5 1 211 2
1 1 1 2 2 2

2

1614 1 1 1 2 1
1 1

sin( ) cos( ) sin(2 )
2 2 8

sin(2 ) cos( ) sin( ) cos( ),
8 2 2 2

a a aa
a a

fa f k a k a

 
   

 


   

  

    


   



                                (12a)

 

2 2

13 2 5 2 5 211 2
1 1 2 2 2

1 1

2 2

5 1 1614 1 1 2
1

1

cos ( ) sin ( ) cos (2 )
2 2 8 4

3 cos (2 )
(1 ) sin ( ) cos ( ) sin ( ) ,

8 4 2 2 2 2

a a aa

a a

a ff k k

a

  
    

  

  
  

   

    


     



            (12b)

 

2

5 2 121 1 22 1
2 2 2 2 2 2

2

24 2
2 1

sin( ) cos( ) sin(2 )
2 2 8

sin(2 2 ) ,
8

a aa a
a a

a f

 
   

 


 



    

 



                                            

(12c) 
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2 2 2 25 522 1 21 1
2 1 2 2 1 2 1 2 2

2 2

2 2
2 25 13 224
1 2 2 1 14 24 2

1

2

1611 2 14 1
2 1 1

1 1

sin ( ) cos ( ) ( ) ( ) cos(2 )
2 2 4 8

3
( ) cos(2 2 ) ( ) sin ( )

8 8 4 2

cos( ) cos(2 ) sin ( ) .
2 8 2 2

a a
a a a a

a a

af f
a a

a

fa f k

a a

  
    

  

 
    

  

 
  

   

      

      


   



               

(12d) 

Where 
1 1 1

2 2 1

,

.

t  

  

 

 
                                                                                                            (13) 

For obtaining the steady state solution for amplitude and phase putting 1 1 2 2 0a a         

into Eq. (12), the resultant formulas can be solved numerically. To discuss the stability 

behavior of these solutions, linearizing these equations according to Lyapunov first (indirect) 

method to give the following system: 

1 1 1 1

1 1 2 2

1 11 1 1 1

1 1 2 21 1

2 22 2 2 2

1 1 2 22 2

2 2 2 2

1 1 2 2

11 12 13 14

21 22

a a a a

a a

a a

a a

a aa a a a

a a

a a

 

   

  

  

   

 

   

 

    
    
 
       

       
    
       
    

       
    
 
    



   

    



    



   

1 1

23 24 1 1

31 32 33 34 2 2

41 42 43 44 2 2

[ ]

a a

J
a a

   

   

     

     
     
     
     
     

    

                                 

                                      (14)

 

where the values of , ( , 1, 2,3,4)m n m n  are given in “Appendix”. Stability of a particular 

fixed point with respect to perturbation proportional to 1exp( )T  is determined by zeros of 

characteristic equation of the jacobian determinate J I  which gives:  

4 3 2

1 2 3 4 0,                                                                                             (15) 

 where , , 1: 4m n m n   are given in appendix. According to Routh-Hurwitze criteria [17, 

18], the necessary and sufficient condition for all characteristic roots of the characteristic 

equation (15) to have negative real parts if and only if the determinate D  and all its principle 

minors are positive, where 

1

3 2 1

4 3 2

4

1 0 0

1

0

0 0 0

D



  


  



 , then the stability conditions will be 

2

1 4 1 2 3 3 1 2 3 1 40, 0, ( ) 0, [ ( ) ] 0,                                                    (16) 

Case 2 Principal parametric resonance  
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Assume that the detuning parameter 2 is to be used to depict the principal parametric 

resonance as shown in the following relation: 

2 2
ˆ2 2       

                                                                                                       (17) 

As in case 1 combining Eq. (7) and (17) into (6) and eliminating all secular terms to have: 

22

14
14 1 11 13

2 2

5 5 5 1 2

2 2
2 2

2 3 0,

i t

o

i i

f e
A f f A i A i A B i B

A B B A A B A k A e i k A e



 


      

    

    

     


                                    (18a) 

2

24 2 21 22

2 2

5 5 5

( ) 2 2
2

2 3 0

i t

o

B f
f f B e i B i B A i A

A B A B B A B

      

  

    

   



                                         (18b) 

Using Eq. (11) into (18) and equating the real and imaginary parts to obtain the following 

system of ordinary differential equations: 

13 211 2
1 1 1 2 2

2

5 1 2 14 1 1 2 1
2 1

sin( ) cos( )
2 2

sin(2 ) sin( ) sin( ) cos( )
4 2 2 2

o

aa
a a

a a f f k a k a


  



 
   

  

   

   



                                  (19a)

 

2

13 2 5 211 2
1 2 2 2 2

1 1

2 2

5 2 5 1 14 1
1 2

cos ( ) sin ( ) cos (2 )
2

3
( cos ( )) cos ( ) sin ( ) ,

2 4 2
o

a aa

a a

a a f kf
f k

 
    

 

  
  

   

   

     



                             (19b)

 

2

5 2 121 1 22 1
2 2 2 2 2 2

24 2
1 2

sin( ) cos( ) sin(2 )
2 2 8

sin( 2 ) ,
2

o

a aa a
a a

a f f

 
   

 


 



    

 



                                           

(19c) 

2 2

5 1 5 222 1 21 1 2
2 2 2

2 2

2
24 13 211 2

1 2 24 2 2

1 1

2 2 2

5 2 5 2 5 1 14 1
2 1

3cos(2 )
sin ( ) cos ( ) (1 )

2 2 4 2 8

cos( 2 ) cos ( ) sin ( )
2 4 2 2

3
cos(2 ) ( cos( )) .

4 4 8 2 2 2

o

o

a aa a

a a

f f aaf

a a

a a a f kf
f

   
  

  

 
    

  

   
 

    

    

    

     



                                 (19d) 

where 
1 2 1

2 2 1

2 ,

.

t  

  

 

 
                                                                                                          (20) 

Similarly For obtaining the steady state solution for amplitude and phase putting 

1 1 2 2 0a a         into Eq. (19), the resultant formulas can be solved numerically using 

MATLAB software. To discuss the stability behavior of these solutions, linearizing these 

equations according to Lyapunov first (indirect) method to give the following system: 
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11 12 13 141 1

21 22 23 241 1

31 32 33 342 2

41 42 43 442 2

a a

a a

   

    

   

    

    
    
    
    
    

    








                                                                                      (21) 

where the values of , ( , 1, 2,3,4)m n m n  are given in “Appendix”. Numerically, primary 

resonance is the worst resonance case that is taken into account in the discussions.  

3Results and discussion 

In this section we illustrate the behavior of the system amplitude and phase at various 

resonance cases. We will show a comparison between active and time delay control and the 

effect of some system parameters on its amplitude. 

3.1 time history 

Figure3 (a, b) shows the time response for the amplitude 1X , 2X , where figure 3 (c) illustrates 

the system phase plane, 

 Without resonance case and without applying any control system (i.e. 1 2 0k k  )at the 

following parameter variables:  

1 2 11 13 14 16

5 22 21 24

65, 100, 0.5, 0.003, 0.82, 0.55, 6.55,

0.9, 0.82, 0.001, 0.5, 7, 2, 0.of f

      

    

          

        
 

   
Fig. 3 (a) the time response for the amplitude

1X . 

Fig. 3 (b) the time response for the  

amplitude
2X . 

Fig. 3 (c)system phase plane 

Figure 4 also shows the Time history without control and with primary resonance at the same 

previous parameters except that 99  we observe that the amplitude and the phase are 

increased due to the resonance operating point. 

   
Fig. 4 (a) the time response for the  

Amplitude 1X . 

Fig. 4 (b) the time response for the amplitude

2X  

Fig. 4 (c)system phase plane 

Now applying active and time delay control for the system with primary resonance and 

comparing the amplitudes. Figure 5, 6 shows the effect of active and time delay control 

on both 1 2,X X . We observe that the effective of active control is about 105%, and Time 

delay controller is about 125% so the time delay controller is more efficient than active 

velocity feed-back controller for this system. 

 



 

9 
 

 
 

Figure 5 (a, b) effect of active control on 
1,

2
X X  respectively at primary resonance case.   

  

Figure 6 (a, b) effect of time delay control on 
1,

2
X X  respectively at primary resonance case, 0.0015  . 

3.2comparisons with numerical method 

In this sub-section we compare the amplitude induced by analytic method (MTSM) and 

numerical method using Rung-Kutta Method (RKM).In figure 7 system modes amplitudes 

are plotted with time in both cases analytic and numerical method using the same parameter 

values in sub-section 3.1 for figure 4, but figure 8 is plotted for 0.0015  . 

  

Fig. 7 (a) Time history for the amplitude 1X  using MTSM (blue 

curve) and RKM (red curve). 
Fig. 7 (b) Time history for the amplitude 2X  using RKM 

(blue curve) and MTSM (red curve). 
 

  
Fig. 8 (a) Time history for the amplitude 1X using MTSM 

(blue curve) and RKM (red curve) for 0.0015  . 
Fig. 8 (b) Time history for the amplitude 2X using MTSM 

(blue curve) and RKM(red curve) for 0.0015  . 

 

3.3Frequency response 
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Now the following figures show the system amplitude against the detuning parameter 1 with 

change in specified values for system parameters. In figure 9 the parameters 1 2,a a with 1 , in 

case of primary resonance case with: 

1 2 11 13 14 16 5

22 21 24 1 2

100, 0.9, 0.7, 0.003, 0.82, 0.55, 6.55, 0.9,

0.82, 0.001, 0.5, 7, 3, 0.0015, 0.001 , 1000, 0.7 , 1, 1.5of f k k

       

    

          

          

we observe that the amplitude decreases with the increase of the gain 2k . Figure 10, 11 

illustrates the effect of 1  on the amplitude with various values of the damping parameter 

1 2,  as given in the figures respectively. The same system parameters values as given for 

figure9 are used and 2 1k  .We observe in fig. 10that the values of 1 2,a a are proportional 

inversely with the damping parameter 1 but in fig. 11 the value of 1a is approximately 

constant with 2 as it is effect on the velocity 2X of the system second mode.  

3.4Amplitude vs. certain system parameters 

Let us consider the parameters given in sub-section 3.3 unless otherwise specified.In this 

sub-section weshows the change of amplitude range with varying of the constant and 

variable rotating forces ,of f as shown in figure 12 (a, b) respectively, 

290, 15, 100k    . The steady state amplitude of the main system is a monotonic 

increasing function of the excitation amplitude up to maximum amplitude at saturation. The 

saturation value may lead to an unstable or damaged system due to its large value. Figure 13 

(a, b) describe the behavior of the amplitude with damping parameters 1 2,   respectivelyat 

10  . 

 

 
 

Fig. 9 (a) System amplitude
1a against detuning  

parameter
 1  at 

2 0.7,1,1.5k  . 

Fig. 9 (b) System amplitude
2a against detuning  

parameter 1 at
2 0.7,1,1.5k  . 
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Fig. 10 (a) System amplitude
1a against detuning parameter  

1 at
1 0.4, 0.5, 0.7  . 

Fig. 10 (b) System amplitude
2a against detuning parameter 

1 at
1 0.4, 0.5, 0.7  . 

 

  
Fig. 11 (a) System amplitude

1a against detuning parameter 

1 at
2 0.4, 0.5, 0.6,0.9  . 

Fig. 11 (b) System amplitude
2a against detuning parameter 

1 at
2 0.4, 0.5, 0.6,0.9  . 

  
Fig. 12 (a) System amplitude against constant  

rotating forces fo  

Fig. 12 (b) System amplitude against variable  

rotating forces f  

 

  
Fig. 13 (a) System amplitude against damping parameters

1  Fig. 13 (b) System amplitude against damping parameters
2  

 

4 Conclusions 

In this research, a system of nonlinear ordinary differential equations that describing a 

rotating beam was analyzed analytically via multiple time scales method. We were studied 

the existence and nonexistence of the time delay effect on the system amplitude in case of 

the worst resonance cases that were primary resonance and principal parametric resonance. 

We concluded that the time delay controller is more efficient than active velocity feed-back 

controller for this system, as the effective of active control is about 105%, and Time delay 

controller is about 125%. In addition, analytic solutions were compared with numerical 
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approximation solutions using Rung-Kutta method. The effects of parameters on the system 

amplitude were discussed.  
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