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Abstract 

In this work, we describe a Bayesian procedure for detection of change-point when we have 

an unknown change point in regression model. Bayesian approach with posterior inference 

for change points was provided to know the particular change point that is optimal while 

Gibbs sampler was used to estimate the parameters of the change point model. The 

simulation experiments show that all the posterior means are quite close to their true 

parameter values. The performance of this method is recommended for multiple change 

points. 
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1. Introduction 

Detection of change points has recently gained popularity in literature due to its applications 

in areas of climatology, econometrics, bioinformatics, and network traffic analysis among 

others. Notable work on change point analysis began with the work of Page (1954). Page 

developed a test for a change in parameter which occurs at an unknown point. This test deals 

with the identification of subsamples and detection of the changes in the parameter value. 

Subsequently, development of different detection of changes has emerged for various 

phenomena. 

Change point is referred as location or time point where the observation follows different 

distributions before and after that point. For a given sample size of n independent 

observations { }, a change point can occurs if and only if there exists a [1, 

], such that the distributions of { } and { } are different with 

respect to some criteria (Kang, 2015). Some of the most commonly used criteria are: change 
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in mean, change in regression coefficients, and change in variance. However, change in 

regression coefficients criterion will be used in this study. 

Bayesian approach can provide adequate uncertainty information about location of change 

point. Literature on Bayesian regression with change point can be seen in the works of  

Raftery and Ackman (1986), Baryy and Hartigan (1993), Stephens (1994), Gossl and 

Kuchenhoff (2001), Moreno, et al. (2005), Giron et al (2007), Pandya et al (2011), Datta et al. 

(2019) among others. 

Bayesian estimation of logistic regression model with unknown threshold limiting value was 

considered by Gossl and Kuchenhoff (2001). It was assumed that there is no effect of 

covariate on the response variable under certain unknown threshold limiting value while 

measurement error in the covariate was also was also accounted in the model. Bayesian 

method outperformed the likelihood solution with the use of data set. 

Pandya et al. (2011) studied a two-phase linear regression with one change point. Bayesian 

estimators were derived for symmetric loss function and most especially for asymmetric loss 

functions namely Linex and general entrophy loss functions while effects of correct and 

wrong prior information on these Bayes estimators were studied. It was observed that the 

Bayes estimators are robust with correct choice of prior specifications. 

Bayesian of high dimensional shrinkage priors in a change point setting to understand 

segment-specific relationship between the dependent and regressors was examined by Datta 

et al (2019). Results obtained from both the simulation and real life data reveals that the 

Bayesian approach can deliver accurate variable selection while inference on the location of 

change points substantially outperforms the classical LASSO based approach. 

This work demonstrates how one can exploit a Bayesian inference on regression model with 

an unknown change point setup to determine the location of the change point and also 

identify the true sparse support for each of the linear models. 

This paper is organized as follows. In section 2, we introduce a typical regression model with 

an unknown change. Bayesian procedure for estimation of regression model with unknown 

change point is presented in section 3. Section 4 gives the numerical study on the model 

while section 5 presents the results of analyses of data generated from the models using the 

Bayesian approach. Section 6 concludes this paper. 



 

 

2. Regression model with unknown change point  

Consider a density time series variable, 
,t

y , 1, ...,t T  conditioned on its lags, the covariates 

and model parameters, the density of such series can be simply be expressed as: 

  | , , , , , , ,   (1) 

In model (1),  is called a change point, it means that for periods until  , one regression will 

assumed to generate variable and following  , another regression will also assumed to 

generate y .  

3. Materials and methods  

3.1 Bayesian inference 

The likelihood function of the model in (1) is given as: 
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 We utilized priors of the form given as: 

For parameter , 

     = '
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For parameter  , 

'

1 2
( , ) ~ ( , )N Q

 
           (4) 

while  

     
2
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2 1 2
~ ( , )IG q q          (6) 

and 

     ~ (1, 2, ..., 1)Unif T          (7) 
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It is observed  is known to be parameter of the model, and placing a uniform prior over all 

the elements, that is, 1, 2, ..., 1T  , it means a change point is assumed to occur Koop et al 

(2005). 

Customarily, the posterior distribution is proportional to both the likelihood times prior and 

can be written as: 

2 2
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The conditional posterior for   can also be obtained as:   
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while the conditional posteriors for variance parameters are: 
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and  
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Hence, the posterior for the change point,   can be given as: 
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In general, there is no way to simplify the expression in (12), because it does not take the 

form of any well-known density. Since  is known to be discrete valued, we can obtain the 

un-normalized density ordinates when 1, ..., 1T   and also make the distribution proper by 

simply dividing each of the ordinate by sum of the ordinate values. 

4 Numerical study 

The lack of analytical results relating to the posterior obtained in section (3.1) suggests a 

posterior simulator. This posterior simulator will helps to obtain draws from the discrete 

distribution. In this section, we employ a Gibbs sampler to estimate the parameters of the 

change point model given in section (3) from the full conditionals posterior distribution. 

We describe a simulation study for assessing the performance of the presented method. Thus 

we have: 

| , , , , , , ,     (13) 

 

(i) The values of  are: 30, 50, and 80 while the sample size are 300 and 500 

(ii) The regressor is generated as: ~ (0,1)
t

x N  

(iii)The prior hyper-parameters were set as: 
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The Gibbs sampler is run 2000 times while 200 will be used as burn-in period  

 

 

 



 

 

5 Results and discussion 

In Tables 1 and 2, the posterior means and standard error for were given for regression 

parameters, variance parameters, and change point parameter (
1

 ,
2

 , 
1

  and 
2

 ), ( 2
  and 

2
 ), and   respectively. The true values of the parameter were given in the parentheses. 

For parameter beta, when the sample sizes are 300 and 500, the optimal change point is 30 

having the smallest standard error while the posterior means are closest to the true 

parameters. For parameter tau, the optimal change point is 80 having the smallest standard 

error while the posterior means are closest to the true parameters. It is apparent that the 

optimal change points for variance parameters 2
  and 2

  are 80 and 30, respectively having 

least standard error for sample sizes of 300 and 500.  

It is important to note that for all models, standard error of change point tends when  = 80 

for sample size of 300 is the smallest while standard error of change point when  = 80 for 

sample size of 500 is tends to be the smallest. This behaviour is expected as for   =80, both 

the sample sizes (300 and 500) for estimating beta and tau are effectively 80.0011 and 80, 

respectively. 

Table 1: Results from simulation when the sample size, n=300 for change points at 30, 

50, and 80. 

 Mean Standard error 

 Change point =  Change point=   

Parameters 30 50 80 30 50 80 

1
  =(5) 4.9780 5.0609 5.0549 0.0402 0.0454 0.0425 

2
 =(2) 2.0354 1.9321 1.9675 0.0398 0.0469 0.0457 

1
 = (3) 2.9740 2.9461 3.0414 0.1058 0.0685 0.0522 

2
 = (5.5) 5.4605 5.5967 5.4687 0.0976 0.0780 0.0508 

2
 = (0.2) 0.3236 0.2228 0.2126 0.0812 0.0466 0.0335 

2
 = (0.5) 0.4489 0.5319 0.4050 0.0378 0.0477 0.0391 

  29.2850 49.9472 80.0011 0.4515 0.2237 0.0577 



 

 

Table 2: Results from simulation when the sample size, n=500 for change points at 30, 

50, and 80. 

 Mean Standard error 

     

Parameters 30 50 80 30 50 80 

1
  =(5) 4.9628 4.9730 5.0385 0.0311 0.0339 0.0330 

2
 =(2) 1.9811 1.9984 1.9597 0.0323 0.0372 0.0353 

1
 = (3) 3.0362 2.9793 2.8103 0.1086 0.0746 0.0546 

2
 = (5.5) 5.4797 5.5278 5.5339 0.1047 0.0776 0.0598 

2
 = (0.2) 0.3432 0.2740 0.2175 0.0849 0.0549 0.0335 

2
 = (0.5) 0.4634 0.5445 0.4507 0.0305 0.0352 0.0310 

  30.0478 49.8539 80 0.2134 0.3806 0 

 

6 Conclusion 

In Bayesian modelling framework, computationally efficient technique for applying Bayesian 

in the analysis of regression model with unknown change point has been applied. The applied 

Bayesian technique was used to know the particular change point that is optimal. It was 

observed that all the posterior means are quite close to their true parameter values. The 

optimal value of the change point is 80 in the estimation of regression model while  and  

have the same support. It is recommended that the performance of this method can also be 

used for multiple change points. 
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