2	Original Research Article
3	
4	Copper (II) Complex of Salicylaldehyde
5	Semicarbazone: Synthesis, Characterization and
6	Antibacterial Activity
7	
8	
9	

10 **ABSTRACT**

1

Salicylaldehyde semicarbazone ligand and its Cu (II) complex have been synthesized and characterized by a range of physicochemical methods. Experimental data shows the complex is monomeric and the copper atom is four coordinated in a square planar geometry.

The ligand chelates the copper in a tridentate fashion through the carbonyl O, imine N, and phenolato O with the fourth position being occupied by coordinated CI. Antibacterial activity of the prepared compounds are tested against the microbes Enterobacter Aerogenes and *Bacillus Cereus*. The metal complex shows antibacterial activity higher than that of the free ligand.

11 *Keywords:* Semicarbazone; Tridentate ligand; Complexation; Antibacterial activity

12 1. INTRODUCTION

28

Semicarbazones are an important class of 13 compounds formed from the condensation of 14 semicarbazide with suitable aldehyde or ketone. 15 Most of these compounds have a wide spectrum 16 17 of biological activity including activity against tuberculosis[1] bacterial[2] and viral infections[3], 18 19 psoriasis[4] and malaria[5]. Salicylaldehyde semicarbazone is obtained by the condensation 20 of "-NH2" group of second position to the low 21 electron dense carbonyl carbon and "-C=O" 22 group of salicylaldehyde (Schiff base formation). 23 It is described below in scheme 1. 24 25 Metal complexes with potential biological activity the focus of extensive investigation. 26 are Remarkably, complexation with copper improves 27

the biological activity of a wide range of organic

29 ligands [6, 7]. Copper of complex 30 salicylaldehyde benzoylhydrazone (H_2sb) , [Cu(Hsb)Cl].H₂O, is an example, which shows 31 32 tumour inhibitory activity [8]. [Cu(Hsb)Cl].H₂O was first found to be a potent inhibitor of cell 33 34 growth and DNA synthesis [9, 10] in a number of 35 human and rodent cell lines [11]. The cytotoxicity of this complex was exposed to 36 37 exceed many other compounds which were 38 previously known to have such properties, 39 including those used clinically. The Cu(II) 40 complex of the structurally related ligand salicylaldehyde acetylhydrazone (H2sa) has also 41 42 exhibited biological activity [12].

43 A group of vanadium complexes of44 salicylaldehyde semicarbazone derivatives were45 reported for their selective potency on human

46 kidney TK 10 tumour cells[13]. The results
47 obtained with this study showed that
48 modification of the semicarbazone backbone
49 could have a significant effect on the cytotoxicity
50 of the complexes.

51 The spectral and analytical characterization of 52 the synthesized complex was carried out to 53 propose the most probable stereochemistry of 54 the complex around the Cu(II) ion. In this study, 55 an antibacterial study has also been involved to 56 follow the biological potency of the coordination 57 compound synthesized.

58 2. EXPERIMENTAL

59 Semicarbazide (analytical grade),

salicylaldehyde, and copper chloride were usedwithout further purification.

62 Methanol (GRP), Ethanol (95%), 63 Dichloromethane (WINLAB GRG 98%) and DMSO (BDH lab, England 99%) were used as 64 Nutrient agar medium 65 solvents. (Include-Peptone, Agar, sugar, marmite) was used to 66 67 check anti-microbial activity.

68 Melting points were measured on a digital 69 melting point apparatus. Elemental analyses for 70 CHN were performed using a Vario EL cube 71 [Germany elements (Elemental) analysis 72 system]. FT-IR spectra were recorded on a FT-IR spectrophotometer [JASCO, FT-IR/4100] 73 Japan using KBr pellets as the standard 74 reference. ESI-MS spectra were done with an 75 Agilent Technologies MSD SL Trap mass 76 spectrometer with ESI source coupled with an 77 1100 HPLC system. 78 Series Magnetic 79 susceptibilities of the metal complexes were measured using a Sherwood Scientific MX Gouy 80 magnetic susceptibility apparatus. 81

82 2.1 Synthesis of ligand salicylaldehyde 83 semicarbazone (L)

To a stirring solution of o-Phenylenediamine 84 (0.32g, 3 mmol) dissolved in about 20 mL 85 ethanol, a solution of salicylaldehyde (0.64 mL, 86 6 mmol) in 10 mL of ethanol was added drop 87 wise. This has resulted an orange color solution, 88 which was refluxed for three hours (Scheme 1). 89 The reaction mixture was cooled and kept for 90 evaporation at room temperature leading to 91 isolation of solid orange product. The product 92 93 thus formed was filtered and washed several 94 times with ethanol and dried in oven under 60°C[14, 15]. The product was found to be 95 soluble in DCM, DMF and DMSO. 96

102

103 2.2 Synthesis of Copper (II) complex with 108 resulting mixture was refluxed for about 3-4

104 salicylaldehyde semicarbazone

105 To the warm ethanolic solution (10 mL) of ligand

106 L (2 mmol), 10 mL warm ethanolic solution (2

107 mmol) of Cu(II) chloride was added and the

112

113

108 resulting mixture was refluxed for about 3-4
109 hours. The obtained precipitates were filtered,
110 washed with ethanol and dried under vacuum on
111 anhydrous CaCl₂.

114

115

116

117

Fig. 1: Proposed structure of the synthesized complex.

118 2.3 Metal Weight Estimation

119 A known weight of the metal complex was taken 120 into a conical flask and concentrated H₂SO₄ (500 µL) was added to it. It was fumed down to 121 122 dryness and the process was repeated. Concentrated HNO₃ (500 µL) and HCIO₄ (500 123 μL) were then added and the mixture was fumed 124 125 to dryness. The process of adding acids and fuming down to dryness was continued until 126 127 there was no black materials. 100 mL distilled water was added to dissolve the residue. Finally, 128 the weight of the metal was estimated 129 130 complexometrically [16, 17] using EDTA (Ethylenediamine tetra acetic acid. Excellent 131 agreement of results were found. 132

133 2.4 Antibacterial Activity Study

Antibacterial activity was checked by the Agarditch method [18]. The *in vitro* antibacterial
screening effects of the examined compounds
were tested against *Bacillus cereus* and
Enterobacter Aerogenes. The compounds were

139 dissolved in dimethyl sulfoxide (DMSO) to get 140 final concentration of 5 mgmL⁻¹. In order to 141 activate the bacterial strain, it was inoculated in 142 25 mL of Mac Conkey agar and incubated for 24 143 h at 37° C. Activated bacterial strain solution was prepared in normal saline (0.9% NaCl 144 145 solution). The bacterial density was adjusted to 146 0.5 McFarland standard units. Mueller-Hinton agar was transferred over sterile 90 mm Petri 147 dishes. Then 1 mL of activated bacterial strain 148 149 solution was inoculated into the media at 40-45° C. The medium was permitted to solidify. 150 151 Fine well was made with the help of cork borer 152 in the plates and

153 then the plates was filled with test solution
154 (synthesized compounds dissolved in DMSO
155 solution). Controls were run for the solvent and
156 each bacteria. The plates were then incubated
157 at 37° C for 24 h. The inhibition zones produced
158 by the tested compounds were measured at the
159 end of the incubation period.

161 3. RESULTS AND DISCUSSIONS

1623.1 Synthesis166163The Schiff base ligand, L was prepared in good166164yield from the condensation reaction of166165salicylaldehyde and semicarbazide in a 1: 1176166stoichiometric ratio.Treatment of the Cu(II)

167 chloride salt with the ligand L, formed the
168 complex corresponding to 1:1 metal-ligand ratio.
169 Physical and analytical data of studied
170 compounds are presented in Table 1 and 2.

Table 1. Physical data of the ligand, L and its metal complex.

Compound	Empirical Formula	FW (g/mol)	Colour (%yield)	m.p. (⁰ C)
L	C ₈ H ₉ N ₃ O ₂	179.18	White (83%)	218
ClCuL	C ₈ H ₈ ClCuN ₃ O ₂	277.17	Brown (78%)	265

Table 2. Analytical data of the compounds.

Compound	Found (Calculated) (%)				µ _{eff} (B.M.)	Conductivity	
	Cu	С	Н	N		(µScm⁻¹)	
	-	53.56	5.10	23.74			
		(53.63)	(5.06)	(23.45)	-	-	
	22.64	34.71	2.89	15.06	1.76	0	
	(22.93)	(34.67)	(2.91)	(15.16)		0	

177 3.2 Elemental Analysis

178 179 compounds are given in Table 2. The analytical 180 data suggest that the complex was 181 mononuclear. The data also reveal that metal to ligand ratio for the complex is 1:1. Moreover, 182 these data also supports the proposed structure 183 184 of the ligand and complex.

185 3.3 Magnetic Measurements

186 The magnetic moment, 1.76 BM is an additional 187 evidence for the proposed square planar 188 geometry of the complex, CICuL where the 189 ligand act as tridentates [19, 20] [21, 22].

3.4 Molar Conductivity Measurements 190

The molar conductance values of 10⁻³ M solution 191 of the ligand and metal complex in DMSO are 192 193 presented in Table 2. The low molar conductance value revealed that the metal 194 complex was non-electrolyte in nature [23]. 195

196 3.5 FT-IR Studies

197 FT-IR spectrum of the studied compounds are 198 shown in Fig. 2-3. IR spectrum of the free ligand, 199 L was compared with the spectra of the complex to determine the binding mode of the ligand to 200 201 metal in the complexes. Characteristic IR peaks 202 of the ligand and its metal complex are given in 203 Table 3. The spectrum of the ligand shows the 204 IR bands at 3458, 3161 and 3104 cm⁻¹ due to v as(NH₂), v s(NH₂) stretching and v as(NH) 205 206 vibration of free NH₂ groups respectively. The 207 spectrum also shows bands at 3284, 1692 and 208 1594 cm-1 due to v(Phenolic-OH), v (>C=O) and 209 v (>C=N) groups respectively. A medium intensity band in the IR spectrum of the ligand at 210 3284 cm⁻¹ is assigned to an intramolecular 211 hydrogen bond v(O-H). This band is absent in 212 the spectrum of the complex, indicating that the 213

214 phenolic-OH group is deprotonated. In complex, The micro analysis data of the synthesized 215 a new peak corresponding to phenolic v(C-O) is 216 observed at 1317 cm⁻¹. The position of ligand 217 band due to (>C=N), 1594 cm-1 and (>C=O), 1692 cm⁻¹ is shifted towards lower side to 1581 218 cm⁻¹, 1687 cm⁻¹ respectively, indicating the 219 coordination through the nitrogen atom of the 220 221 imine group and oxygen atoms of the ketonic (>C=O) and phenolic -OH groups.[24] [25, 26]. 222 223 The coordination through the azomethine 224 nitrogen and phenolic oxygen to metal atom were further supported by the appearance of 225 226 additional M-N & M-O vibrations in the region 227 740 cm⁻¹ and 548 cm⁻¹, respectively in the IR 228 spectra of the metal complex.

Table 3. IR (cm⁻¹) and ESI-MS data of the compounds.

Compound	<i>v</i> (O-H)	v (C=O)	<i>v</i> (C=N)	v (Cu-N)	v (Cu-O)	ESI-MS
L	3284	1692	1594	-	-	179.0759
ClCuL	-	1687	1581	740	548	277.0253

Fig. 2: IR spectrum of the ligand, L.

249

250 3.7 Antibacterial Activity

251	The antibacterial activity of the compounds were	265	of cells of organisms or the difference in
252	investigated against the microorganism Bacillus	266	ribosomes of bacterial cell [27]. The reasons of
253	Cereus and Enterobacter Aerogenes with the	267	showing higher anti-bacterial activity of the
254	concentration of 5 mgmL ⁻¹ employing agar ditch	268	complex than that of free ligand can be
255	method. The zone of inhibition were measured	269	explained on the basis of Overtone's concept
256	in diameter (mm). The antibacterial activity	270	and Tweedy's chelation model [28]. Polarity of
257	results are presented in Table 4. The metal	271	metal ion is reduced to a greater extent due to
258	complex showed anti-bacterial activity over the	272	the overlapping of the ligand orbital and partial
259	free ligand. The ligand, L exhibited very little	273	sharing of positive charge of metal ion with
260	activity against both the organisms. The	274	donor atoms of the ligand on chelation [29]. The
261	complex, CICuL showed high activity against the	275	lipophilic character of the central metal atom is
262	microbes Enterobacter Aerogenes. The variation	276	also increased upon chelation, which
263	in the activity of metal complex against tested	277	consequently favors the permeation through the
264	organisms depends on either the impermeability	278	lipid layer of cell membrane [30].
279			

Table 4. Antibacterial activity of the ligand L and its Cu(II) complex (5 mg mL⁻¹).

281

	Diameter of inhibition zone of bacteria (mm)			
Compound	Gram positive	Gram negative		
	Bacillus cereus	Enterobacter aerogenes		
L	+	+		
ClCuL	+++	+ + +		

282

Control (DMSO): No activity (There was no inhibition zone)

283 Note: High activity = + + + (Inhibition zone > 12mm and Sight = + (Inhibition zone = 4-8 mm).

Fig. 5. Statistical representation for antibacterial activity for the ligand (L) and its Cu (II) complex.

286

287

288 4. CONCLUSION

289 The spectral, elemental analysis, conductivity 308 derivatives 290 291 synthesized metal complex of Cu(II) with the 292 tridentate ligand, salicylaldehyde semicarbazone 293 have shown square planar geometry. The metal 312 294 complex is biological active and exhibit 295 enhanced antibacterial activity compared to free 296 ligand.

The activity 297 antibacterial and chemical 316 properties is dependent on molecular structure 298 317 299 of the compound. Hence, substitution at the 318 300 aromatic ring of the ligand can modify the 319 301 electronic and steric properties of the resulting 320 302 321 complexes, which can enable fine-tuning of 303 chemical and biological properties of the ligands 322 304 and metal complexes. 323 305 It is important to note that numerous 324 325 306 salicylaldehyde semicarbazone ligands can be

307 readily synthesized using commercially available 326

of semicarbazide and and magnetic measurements data of the 309 salicylaldehyde. A more systematic investigation 310 of such type of metal complexes could be 311 valuable for different biological applications.

313 **COMPETING INTERESTS**

Authors have declared that no competing 314 315 interests exist.

327

328

329

330

- ----
- 331
- 332

333	REFE	RENCES	379		chimica act
334			380 381	9.	108. Johnson.
335 336 337	1.	Domagk, G., et al., Uber eine neue, gegen Tuberkelbazillen in vitro wirksame Verbindungsklasse.	382 383 384 385		chelators a DNA synthe human cells
339		315-315.	386		benzoyl hyd
340	2.	Sithambaresan, M. and M.P. Kurup, 2-	387 388	10	Acta, 1982.
341 342		(3-Etnoxy-2-nydroxybenzylidene)-N- phenvlhvdrazinecarboxamide. Acta	389	10.	of cultured
343		Crystallographica Section E: Structure	390		fibrosarcom
344		Reports Online, 2011. 67 (11): p. o2972-	391 302		analogs of
345 346	3.	Thompson. R., et al., Effect of	393		1983. 32 (24
347	-	heterocyclic and other	394	11.	Aruffo, A.A.
348		thiosemicarbazones on vaccinia	395		Fe (III) al
349 350		Immunology, 1953, 70 (3): p. 229-234.	397		synthetic
351	4.	KAMINSKY, A., P. BUMASCHNY, and	398		diverse biol
352		J. FISBEIN, Conteben (TB1/698) in the	399	12	Chimica Act
353		argentina, 1953. 40 (21): p. 1263.	401	12.	Aroylhydraz
355	5.	Klayman, D.L., et al., 2-Acetylpyridine	402		spectroscop
356		thiosemicarbazones. 1. A new class of	403 404		evaluation arovlhvdraz
358		medicinal chemistry, 1979. 22 (7): p.	405		JOURNAL
359	_	855-862.	406	40	SCIENCES,
360	6.	Mohindru, A., J.M. Fisher, and M. Rabinovitz Bathocuproine supported at the support of the suppo	407 408	13.	complexes
362		tissue culture-compatible indicator of	409		semicarbaz
363		copper-mediated toxicity. Nature, 1983.	410		vitro anti-tu
364 365	7	303 (5912): p. 64-65. Ranford J.D. P.J. Sadler and D.A.	412		IVVO2
366	· •	Tocher, Cytotoxicity and antiviral activity	413		semicarbaz
367		of transition-metal salicylato complexes	414	11	biochemistry
368		and crystal structure of bis (diisopropylsalicylato)(1 10-	415	14.	Thermal C
370		phenanthroline) copper (II). Journal of	417		Metal Con
371		the Chemical Society, Dalton	418		Base Lig
372	8	I ransactions, 1993(22): p. 3393-3399.	419		Sciences. 2
374	0.	of the antitumour-related ligand	421	15.	Mitu, L. an
375		salicylaldehyde acetylhydrazone (H2L)	422		characteriza
376		and the single-crystal X-ray structures of	423 424		CO (II), NI arovlhvdraz
378		(<i>HL</i>)(<i>pyridine</i>)(<i>NO3</i>)} 2]. Inorganica	425		Chemistry, 2

chimica acta, 1995. **236**(1-2): p. 101-108.

 Johnson, D.K., et al., Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured rodent and human cells by aroylhydrazones and by a copper (II) complex of salicylaldehyde benzoyl hydrazone. Inorganica Chimica Acta, 1982. 67: p. 159-165.

10. Pickart, L., et al., Inhibition of the growth of cultured cells and an implanted fibrosarcoma by aroylhydrazone analogs of the Gly-His-Lys-Cu (II) complex. Biochemical pharmacology, 1983. **32**(24): p. 3868-3871.

11. Aruffo, A.A., et al., *Structural studies of Fe (III) and Cu (II) complexes of salycylaldehyde benzoyl hydrazone, a synthetic chelating agent exhibiting diverse biological properties.* Inorganica Chimica Acta, 1982. **67**: p. L25-L27.

12. Dimmock, J., G. Baker, and W. Taylor, Aroylhydrazones. 2. ultraviolet spectroscopy and antimicrobial evaluation of some substituted aroylhydrazones. CANADIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 1972. 7(4): p. 100-103.

13. Noblía, P., et al., Vanadium (V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2 (5-bromosalicylaldehyde semicarbazone)]. Journal of inorganic biochemistry, 2005. **99**(2): p. 443-451.

14. Afsan, F., et al., Synthesis, Spectral and Thermal Characterization of Selected Metal Complexes Containing Schiff Base Ligands with Antimicrobial Activities. Asian Journal of Chemical Sciences, 2018: p. 1-19.

15. Mitu, L. and A. Kriza, *Synthesis and characterization of complexes of Mn (II), Co (II), Ni (II) and Cu (II) with an aroylhydrazone ligand.* Asian Journal of Chemistry, 2007. **19**(1): p. 658.

426	16.	Schwarzenbach, G. and H.A. Flaschka,	468
427		Complexometric titrations [by] G.	469
428		Schwarzenbach & H. Flaschka. 1969,	470
429		London: Methuen.	471
430	17.	Asraf, M.A., et al., Structural Elucidation,	472
431		3D Molecular Modeling and Antibacterial	473
/32		Activity of Ni (II) Co (II) Cu (II) and Mn	17/
402		(II) Complexes Containing Selephon	475
433		(II) Complexes Containing Salophen	4/0
434		Ligand. Asian Journal of Applied	476
435		Chemistry Research, 2019: p. 1-15.	477
436	18.	Parekh, J., et al., Synthesis and	478
437		antibacterial activity of some Schiff	479
438		bases derived from 4-aminobenzoic	480
439		acid. JOURNAL-SERBIAN CHEMICAL	481
440		SOCIETY, 2005. 70 (10): p. 1155.	482
441	19.	Tas, E., et al., The sterically hindered	483
442		salicylaldimine ligands with their copper	484
443		(II) metal complexes: Synthesis,	485
444		spectroscopy, electrochemical and thin-	486
445		laver spectroelectrochemical features.	487
446		Polyhedron 2008 27 (3) p 1024-1032	488
447	20	FI-Sherif A A Synthesis spectroscopic	489
448		characterization and biological activity	490
110		on newly synthesized conner (II) and	400
450		nickel (II) complexes incorporating	102
450		hidoptoto ovygon nitrogon bydrozono	492
451		ligende Inergenies Chimics Acto 2000	493
402		262(14) m 4001 5000	494
403	04	362 (14). p. 4991-5000.	495
454	21.	Ruggiero, C.E., et al., Synthesis and	496
455		structural and spectroscopic	497
456		characterization of mononuclear copper	498
457		nitrosyl complexes: models for nitric	499
458		oxide adducts of copper proteins and	500
459		copper-exchanged zeolites. Journal of	501
460		the American Chemical Society, 1993.	502
461		115 (24): p. 11285-11298.	503
462	22.	Willett, R.D., D. Gatteschi, and O. Kahn,	504
463		Magneto-structural correlations in	505
464		exchange coupled systems, 1985.	506
465	23.	Geary, W.J., The use of conductivity	507
466	_0.	measurements in organic solvents for	508
467		the characterisation of coordination	000
510			509
510			
511			
512			
512			
513			
511			
514			

compounds. Coordination Chemistry Reviews, 1971. **7**(1): p. 81-122.

- 24. Aranha, P.E., et al., Synthesis, characterization, and spectroscopic studies of tetradentate Schiff base chromium (III) complexes. Polyhedron, 2007. **26**(7): p. 1373-1382.
- 25. Abd-Elzaher, M.M., Spectroscopic characterization of some tetradentate Schiff bases and their complexes with nickel, copper and zinc. Journal of the Chinese Chemical Society, 2001. **48**(2): p. 153-158.
- 26. Asraf, M.A., et al., Homogeneous photochemical water oxidation with metal salophen complexes in neutral media. Photochemical & Photobiological Sciences, 2019.
- 27. Mounika, K., A. Pragathi, and C. Gyanakumari, Synthesis characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. Journal of Scientific Research, 2010. **2**(3): p. 513-513.
- 28. Tweedy, B., *Plant extracts with metal ions as potential antimicrobial agents.* Phytopathology, 1964. **55**: p. 910-914.
- Thangadurai, T.D. and K. Natarajan, Mixed ligand complexes of ruthenium (II) containing α, β-unsaturated-βketoaminesand their antibacterial activity. Transition Metal Chemistry, 2001. 26(4-5): p. 500-504.
- Alias, M., H. Kassum, and C. Shakir, Synthesis, physical characterization and biological evaluation of Schiff base M (II) complexes. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2014. 15(1): p. 28-34.