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Abstract: 
 
Computational chemistry is unique method in drug discovery which reduce cost. In 

this study 86 molecules containing isatin core were subjected to quantitative structure-

activity relationship analysis and docking study to find the structure requirements for 

ligand binding. The structures were sketched and optimized in Hyperchem. The 

structural invariants used in this study were those obtained from whole molecular 

structures: by both hyperchem and dragon software (16 types of descriptors). Four 

chemometrics methods including MLR, FA-MLR, PCR and GA-PLS were employed 

to make connection between structural parameters and anticancer effects. MLR 

analysis explained the positive effect of the number of urea derivatives, thio urea, 

amide, thioamide, hydrazone, thiocarbohydrazone, nBnz with the halogen substitution 

on 5 position of isatin ring on the antimicrobial activity. It also shows nArCN, 

nPyridines have negative effects on the antimicrobial activity of studied compound  

The FA-MLR describes the effect of 3D-MORSE and Galvez Topological charge 

descriptors and on antimicrobial activity of the studied compounds. The quality of 

PCRA equation is better than those derived from FA-MLR. A comparison between 

the different statistical methods employed revealed that GA-PLS represented superior 

results and it could explain and predict 73% and 68% of variances in the –LogMIC 

data, respectively. Comparison between QSAR and docking analysis revealed 

that by decreasing in number of ring and lipophilicity (also Logp) 

for design of new compounds can have better activity. Substitutions 

such as urea, thiourea, thiocarbohydrazone,  benzhydrazide as on 

isatin ring, can cause better interaction with receptor. 
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Introduction: 

 

FabI was confirmed to be the only enoyl-acyl carrier protein (ACP) reductase required 

for the synthesis of fatty acids. FabI is required for the elongation of both long-chain 

saturated and unsaturated fatty acids in Escherichia coli. Thus the activity of this 

enzyme plays a determinant role in completing cycles of fatty acid biosynthesis in E. 

coli. Indole compounds can inhibit FabI [1]. One of the best promising new indole 

compounds having many interesting activity profiles are isatin and isatin derivatives. 

The isatin (1H-indole-2,3-dione) moiety is responsible for a wide spectrum of 

biological property such as antibacterial, antifungal, antiviral, anticancer, 

anticonvulsant, anti-HIV and antiparkinsonian activity in many synthetically versatile 

molecules [2–9]. Among these properties antibacterial activities (against Escherichia 

coli) of this moiety was of our interest to study the quantitative structure-activity 

relationships of a series of 86 isatin derivatives reported in literature.  

Synthesis and evaluation of biological activity of novel compounds usually time 

consuming and take large amounts of money. Today the uses of computational 

methods for designing newly biologically active compounds have opened a new 

window to modern drug discovery study. Computational methods can accelerate the 

procedure of discovering new drugs by designing new compounds and predicting 

potency or activity of them. Quantitative structure activity relationship (QSAR) 

studies provide pharmaceutical chemists valuable information that is useful for drug 

design and prediction of drug activity [10-14]. QSAR studies, as one of the most 

important areas in chemometrics, give information that is useful for molecular design 

and medicinal chemistry [8-12]. QSAR models are mathematical equations 

constructing a relationship between chemical scaffold and biological property. These 

models have another ability, which is providing a deeper knowledge about molecule 

design.  

Linear and nonlinear QSAR models are mathematical equations that display us 

enough information about the mechanism of biological activity of compounds by 

constructing a relationship between chemical structures and biological activities. The 

first step in constructing QSAR models is the proper representation of the structural 

and physicochemical features of chemical compounds [15-18]. These features named 

molecular descriptors that represent variation in the structural features property of the 

molecules by numerical and have high effect on the biological property of compound 



 

 

[19-22]. Molecular descriptors have been classified into different categories such as 

physiochemical, constitutional, geometrical, topological, and quantum chemical 

descriptors. Dragon and hyperchem are two famous computational softwares provide 

us more than 4000 of these descriptors [23,24].   

Different QSAR methods including multiple linear regression (MLR), partial least 

squares combined with genetic algorithm for variable selection (GA-PLS), factor 

analysis–MLR (FA-MLR), principal component regression analysis (PCR) were used 

to make connections between structural descriptors and antibacterial activity of 

studied compounds [25-28]. An important approach of the researchers in modification 

of the isatin moiety has been to establish a comprehensive structure–activity 

relationship (SAR), for this class of antibacterial agents (against Escherichia coli).  

Our research show that our studied series of compounds didn’t evaluate for QSAR 

studies. Our Different QSAR analysis establishes mathematical relationship between 

biological activities and computable parameters such as chemical, topological, 

physicochemical, stereochemical or geometrical and so on indices. 

The molecular docking studies help us to understand the different interactions 

between the ligands and enzyme active sites (FabI) in detail and also help to design 

novel potent structure. Molecular docking simulation technique was also performed 

on eighty six compounds to show the details molecular binding models for these 

compounds interacting with the key active site of protein. 

 

  



 

 

2.Methods 

 

2.1. Data set 

The biological data used in this study were antimicrobial activity against Ecoli, (in 

terms of –log MIC), of a set of 86 isatin derivatives [30-35]. At first the outlier data 

was removed from the data set according to principle component analysis, it was 

shown in Figure 1. The data set was classified into calibration and prediction set by 

kenardston algorithm of the 16 prediction molecules from the spaces of the calculated 

descriptors. The structural features and biological activity of these compounds are 

listed in Table 1.  

 

[Table 1. near here], [Figure 1 near here] 

 

2.2. Descriptor generation 

 The structural features of the studied compounds are listed in Table 1. The two-

dimensional structures of molecules were drawn by Hyperchem 8.0 software 

(Hypercube Inc.) to calculate whole molecular structure-based descriptors. The final 

geometries were obtained with semi-empirical AM1 calculations in Hyperchem 

program. The molecular structures were optimized using the Polak-Ribiere algorithm 

until the root mean square gradient was 0.01 kcal mol-1 [23]. Some physicochemical 

parameters including molecular volume (V), molecular surface area (SA), 

hydrophobicity (Log P), hydration energy (HE) and molecular polarizability (MP) 

were calculated using Hyperchem Software. In order to calculate some molecular 

descriptors including topological, constitutional and functional group descriptors the 

optimized molecules were transferred into the Dragon package, developed by the 

Milano chemometrics and QSAR Group [24]. The calculated descriptors from whole 

molecular structures are briefly described in Table 2. 

[Table 2. near here] 

 

3.2. Data screening & model building 

The selected descriptors from each class and the experimental data were analyzed by 

the stepwise regression SPSS (version 22.0) software. The calculated descriptors were 

collected in a data matrix whose number of rows and columns were the number of 

molecules and descriptors, respectively. Multiple linear regressions (MLR) and partial 



 

 

least squares (PLS) were used to derive the QSAR equations and feature selection was 

performed by the use of genetic algorithm (GA). MLR with factor analysis as the data 

pre-processing step for variable selection (FA-MLR) and principal component 

regression analysis (PCRA) methods were also used to explore the QSAR equations. 

The resulted models were validated by leave-one out cross-validation procedure 

(using MATLAB software) to check their predictability and robustness.  

A key step in QSAR modeling is evaluating model’s stability and prediction 

ability. We used cross-validation and external test set for these proposes. Cross-

validation has different variants such as leave-one-out (LOO), leave-group-out (LGO) 

and -fold. It was shown previously that LOO can leads to chance and overfitted 

models whereas LGO is more sensitive to chance variables [36]. Therefore, we used 

LGO for model-validation utilizing correlation coefficient and root mean square error 

of cross-validation (q2 and RMSECV, respectively) as scoring function. In addition, 

an external test set composed of 6 molecules was also used. The molecules in this set 

did not have contribution in the model step and thus their predicted values can give a 

final prediction power of the models as measured by correlation coefficient, root 

mean square errors of prediction, relative error of prediction (R2
P, RMSEP and REP, 

respectively). 

The PLS regression method used in this study was the NIPALS-based algorithm 

existed in the chemometrics toolbox of MATLAB software (version 12 Math work 

Inc.). Leave-one-out cross-validation procedure was used to obtain the optimum 

number of factors based on the Haaland and Thomas F-ratio criterion [37]. 

 

3. Results and discussion 

3.1. MLR analysis 

In the first step, separate stepwise selection-based MLR analyses were performed 

using different types of descriptors, and then, an MLR equation was obtained utilizing 

the pool of all calculated descriptors. The resulted QSAR models from different types 

of descriptors for the compounds (86 molecules as calibration and 16 molecules as 

prediction sets) are listed in Table 3.  

[Table 3. near here] 



 

 

The equation E1 of Table 3 shows among chemical descriptors, the negative effect of 

log p of the molecules on the antimicrobial activity. This equation shows the 

hydrophilic molecules shows better antimicrobila effect. The second equation of 

Table 3 demonstrated the effect of constitutional descriptors on the activity of these 

compounds. It also explain the negative effects nCIC (number of rings), and nR10 

(number of 10-membered rings) on activity (such as molecule series 20-39, 49, 55, 65 

have intermediate activity and inactive compounds). 

The effect of topological group counts parameter on antimicrobial activity of the 

studied compounds has been described by equation E3 of Table 3. It shows that 

among topological descriptors spanning tree number (STN) has the negative effect on 

cytotoxic activity of the compounds.  

 The equation E4 of Table 3 was found by using Mol-Walk descriptors (E4), which 

explains the negative effect of PIPC09 of studied compounds on the activity of the 

compounds. The equation E5-E16 and E16 of Table 3 demonstrated the effect of 

posititive and negative effects of BCUT, Galvz topological Charge indices, 2D 

autocorrelations, Charge, Burden eigenvalues, RDF, 3D MoRSE, WHIM, 

GETAWAY and charge descriptors on the anti-cancer activity of these compounds.  

The MLR equation of Table 3 obtained from the pool of functional groups 

descriptors, E17, explained the positive effect of the number of urea derivatives 

(nCONN), thio urea (nCSNN) (such as molecules of 1-9, 69-86), amide(nCONH2), 

thioamide (nRCONHR), hydrazone (nC=N-N), thiocarbohydrazone  (such as 

molecules of 1-9) on the antimicrobial  activity. It also indicate the positive effect of 

nBnz (number of benzene rings) with the halogen substitution on 5 position of isatin 

ring F > Cl > Br (nArX) (molecules series 14-19). This equation also shows nArCN 

(Aromatic nitrile such as compounds 22, 25, 28, 31, 34, 37, 39), nPyridines (pyridine 

derivetives) have negative effects on the antimicrobial activity. May be there isn't any 

electron with drawing group in the receptor site, thus for design of new compounds 

it's better to don't use these substitution on the backbone of compounds. The negative 

sign of this group proposed that a decrease in the number of these descriptors resulted 

in an activity enhancement. This equation, which has a high statistical quality (R2 = 

0.63, Q2 = 0.59).  

The statistical parameters of prediction, listed in Table 4, indicate the suitability of the 

proposed QSAR model based on MLR analysis of molecular descriptors. The 



 

 

correlation coefficient of prediction is 0.62, which means that the resulted QSAR 

model could predict 62% of variances in the antimicrobial activity data. It has root 

mean square error of 0.21.     

[Table 4. near here] 

 

3.2. GA-PLS model 

Multicolinearity is a real problem in MLR analysis. This problem in the descriptors is 

omitted by PLS analysis. In fact, in PLS analysis, the descriptors data matrix is 

decomposed to orthogonal matrices with an inner relationship between the dependent 

and independent variables. This modeling method coincides with noisy data better 

than MLR, because a minimal number of latent variables are used for modeling in 

PLS. In GA-PLS analysis a variable selection method is used to find the more 

convenient set of descriptors because redundant variables degrade the performance of 

PLS analysis, similar to other regression methods. In the present study, GA was used 

as variable selection method. The data set (n = 86) was divided into two groups: 

calibration set (n = 70) and prediction set (n = 16). Given 70 calibration samples; 

cross-validation procedure was used to find the optimum number of latent variables 

for each PLS model. In this work, in each run of GA-PLS method a large number of 

acceptable models were created. GA produces a population of acceptable models in 

each run. In this work, many different GA-PLS runs were conducted using different 

initial set of populations (50-250) and therefore a large number of acceptable models 

were created. The most convenient GA-PLS model that resulted in the best fitness 

contained 8 descriptors including, one constitutional descriptor (nCIC), one 3D 

MoRSE descriptors (MOR30M) parameter, two WHIM descriptor (P1P, E1U) and 

four functional descriptors (nRCONHR, nCONN, nArCN, nPyridines). The majority 

of these descriptors are functional indices All of them being those obtained by 

different MLR-based QSAR models. The PLS estimate of the regression coefficients 

are shown in Figure 2.   

This model not only has a high cross-validation statistics, but also represents a high 

ability for modeling external test samples. It could explain and predict about 75% of 

variances in the antimicrobial activity (against Ecoli) of the studied molecules. There 

is a close agreement between the experimental and predicted values of antimicrobial 

activity data. 



 

 

To measure the significance of the 8 selected PLS descriptors in the protein 

tyrosine kinase inhibitory activity; In order to investigate the relative importance of 

the variable appeared in the final model obtained by GA-PLS method, variable 

important in projection (VIP) was employed [38]. VIP values reflect the importance 

of terms in PLS model. According to Erikson et al. X-variables (predictor variables) 

could be classified according to their relevance in explaining y (predicted variable), so 

that VIP > 1.0 and VIP < 0.8 mean highly or less influential, respectively, and 0.8 < 

VIP< 1.0 means moderately influential. The VIP analysis of PLS equation is shown in 

Figure 3. As it is observed, nRCONHR, P1P and E1U indices represent the most 

significant contribution in the resulted QSAR model. In addition, parameters such as 

nArCN and MOR30M have been found to be moderately influential parameters. 

[Figure 2. Near here], [Figure 3. Near here] 

 
 

3.3. FA-MLR and PCRA 

FA-MLR was performed on the dataset. Factor analysis (FA) was used to reduce 

the number of variables and to detect structure in the relationships between them. This 

data-processing step is applied to identify the important predictor variables and to 

avoid collinearities among them [39]. Principle component regression analysis, 

PCRA, was tried for the dataset along with FA-MLR. With PCRA collinearities 

among X variables are not a disturbing factor and the number of variables included in 

the analysis may exceed the number of observations [40]. In this method, factor 

scores, as obtained from FA, are used as the predictor variables [39]. In PCRA, all 

descriptors are assumed to be important while the aim of factor analysis is to identify  

relevant descriptors. 

Table 5 shows the nine factor loadings of the variables (after VARIMAX rotation) 

for the compounds tested for cytotoxic activity. As it is observed, about 81.2% of 

variances in the original data matrix could be explained by the selected nine factors.  

Based on the procedure explained in the experimental section, the following two-

parametric equation was derived (Table 6). 

 

Y= 5.766(±0.547) -0.031(±0.012) MOR30m -2.336(±0.721) JGI5 
 

R2 = 0.64  S.E = 0.24  F = 14.69   Q2 = 0.59  RMScv = 0.12   



 

 

This equation could explain about 59% of the variance and predict 64% of the 

variance in pMIC data. It has a root mean square error of 0.12. This equation 

describes the effect of 3D-MORSE and Galvez Topological charge descriptors 

(MOR30m and JGI5) and on antimicrobial activity of the studied compounds.   

When factor scores were used as the predictor parameters in a multiple regression 

equation using forward selection method (PCRA), the following equation was 

obtained (Table 7): 

 

Y=4.285(±0.57)-0.258(±0.031)F1-.189(±0.021)F7+0.124(±0.027)F6+0.123(0.057)F8  
 
R2 = 0.73  S.E. = 0.34  F = 15.54   Q2 = 0.68  RMScv = 0.15          

 

This equation could explain and predict 68% and 73% of the variances in pMIC 

data, respectively. The root mean square error of PCRA analysis was 0.15. Since 

factor scores are used instead of selected descriptors, and any factor-score contains 

information from different descriptors, loss of information is thus avoided and the 

quality of PCRA equation is better than those derived from FA-MLR. Whilst the data 

of this analysis show acceptable prediction, we see that the predicted values of some 

molecules are near to each other.  

As it is observed from Table 5, in the case of each factor, the loading values for 

some descriptors are much higher than those of the others. These high values for each 

factor indicate that this factor contains higher information about which descriptors. It 

should be noted that all factors have information from all descriptors but the 

contribution of descriptor in different factors are not equal. For example, factors 1 and 

2 have higher Constitutional, Charge, WHIM, Atom-center, Connectivity, Functional, 

MORSE and GETAWAY whereas information about RDF, MORSE, burden 

eigenvalues 2Dautocorrelations and functional descriptors are highly incorporated in 

factor 3 and 4. Factor score 5, 6, 7 and 8 signify the importance of functional 

chemical and Atom-center descriptors. 

 

[Table 5 near here], [Table 6 near here], [Table 7 near here] 

 

3.4. Robustness and applicability domain of the models  



 

 

Leverage is one of standard methods for this purpose. Warning leverage (h*) is 

another criterion for interpretation of the results. The warning leverage is, generally, 

fixed at 3k/n, where n is the number of training compounds and k is the number of 

model parameters. A leverage greater than warning leverage h* means that the 

predicted response is the result of substantial extrapolation of the model and therefore 

may not be reliable [41]. The calculated leverage values of the test set samples for 

different models and the warning leverage, as the threshold value for accepted 

prediction, are listed in Table 8. As seen, the leverages of all test samples are lower 

than h* for all models. This means that all predicted values are acceptable. 

[Table.8 near here] 

 

3.5. Molecular Docking Studies 

The docking study was performed using the AutoDock 4.2. All the eighty six isatin 

derivatives were docked into the active site of the enzymes FabI (PDB:1lx6). All the 

docking protocols were done on validated structures, with RMSD values below 2 Å. 

The conformation with the lowest ones was considered as the best docking result. 

Docking binding energies of these active compounds were summarized in Table 9. 

Docking analysis showed that Compounds 1-9 with thiocarbazone moiety, was good 

inhibitor for FabI, because of good interaction between enzyme and cofactor. With 

suitable orientation of thiocarbazone group, hydrogen and hydrophobic bounds can 

occur. An electron rich group such as NH2 substitution on phenyl ring that increase 

electron charge can create better interaction with receptor and has low binding energy. 

Also compounds have benzhydrazide substitution hydrogen binding interaction 

between tyrosine 156 and benzhydrazide. Halogen and methyl substitution on isatin 

ring of this series (1-9) can cause better interaction with receptor. Benzyl amide, 

methyl and halogen groups on isatin ring of compound 10-19 showed good docking 

score. But Halogen and methyl groups at C-5 isatin ring of series (40-43) can cause 

bad interaction with receptor. Urea moiety can show good interaction between 

tyrosine 156 and coenzyme. Our results indicated Benzamide group show good 

interaction but OH group has bad interaction with receptors. Compounds 47 and 48 

with isonicotine amide group on isatin ring showed good interaction with receptor. 

The interaction modes of 2, 14 and 27, 40 those with the best docking score are shown 

in Figure 4. 



 

 

[Table 9near here], [Figure 4 near here] 

4.Conclusions 

Quantitative relationships between molecular structure and antibacterial activity of 

isatin derivatives were discovered by four chemometrics methods: MLR, GA-PLS, 

PCR and FA-MLR. MLR analysis explained the positive effect of the number of urea 

derivatives (nCONN), thio urea (nCSNN), amide (nCONH2), thioamide 

(nRCONHR), hydrazone (nC=N-N), thiocarbohydrazone on the antimicrobial  

activity. It also indicate the positive effect of nBnz (number of benzene rings) with the 

halogen substitution on 5 position of isatin ring F > Cl > Br (nArX). This equation 

also shows nArCN, nPyridines (pyridine derivetives) have negative effects on the 

antimicrobial activity of studied compound. The FA-MLR describes the effect of 3D-

MORSE and Galvez Topological charge descriptors (MOR30m and JGI5) and on 

antimicrobial activity of the studied compounds. The quality of PCRA equation is 

better than those derived from FA-MLR. Whilst the data of this analysis show 

acceptable prediction, we see that the predicted values of some molecules are near to 

each other. Factors 1 and 2 have higher Constitutional, Charge, WHIM, Atom-center, 

Connectivity, Functional, MORSE and GETAWAY whereas information about RDF, 

MORSE, burden eigenvalues 2Dautocorrelations and functional descriptors are 

highly incorporated in factor 3 and 4. Factor score 5, 6, 7 and 8 signify the importance 

of functional chemical and Atom-center descriptors. A comparison between the 

different statistical methods employed revealed that GA-PLS represented superior 

results and it could explain and predict 73% and 68% of variances in the –LogMIC 

data, respectively. Comparison between QSAR and docking analysis revealed 

that by decreasing in number of ring and lipophilicity (also logp) 

for design of new compounds can have better activity. Substitutions 

such as urea, thiourea, thiocarbohydrazone, benzhydrazide as on 

isatin ring, can cause better interaction with receptor. 
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Table1 1. Chemical structure of isatin derivatives used in this study  
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Table 2. Brief description of some descriptors used in this study  

 

Descriptor type Molecular Description 

Chemical LogP (Octanol-water partition coefficient), Hydration Energy (HE), 
Polarizability (Pol), Molar refractivity (MR), Molecular volume (V), Molecular 
surface area (SA). 

Constitutional mean atomic vander Waals volume (MV), no. of atoms, no. of non-H atoms, no. 
of bonds, no. of heteroatoms, no. of multiple bonds (nBM), no. of aromatic 
bonds, no. of functional groups (hydroxyl, amine, aldehyde, carbonyl, nitro, 
nitroso, etc.), no. of rings, no. of circuits, no of H-bond donors, no of H-bond 
acceptors, no. of Nitrogen atoms (NN), chemical composition, sum of Kier-Hall 
electrotopological states (Ss), mean atomic polarizability (Mp), number of 
rotable bonds (RBN), mean atomic Sanderson electronegativity (Me), number 
of Chlorine atoms (NCl), number of 9-membered rings (NR09), etc. 

Topological Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, 
X2Av, X3Av, X4Av), information content index (IC), Sum of topological 
distances between F..F (T(F..F)), Ratio of multiple path count to path counts 
(PCR), Mean information content vertex degree magnitude (IVDM), 
Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal hyper-detour 
index (Rww), Eigenvalue coefficient sum from adjacency matrix (VEA1), 
radial centric information index, 2D petijean shape index (PJI2), mean 
information index on atomic composition(AAC), Kier symmetry index(S0K), 
mean information content on the distance degree equality (IDDE), structural 
information content (neighborhood symmetry of 3-order) (SIC3), Randic-type 
eigenvector-based index from adjacency matrix (VRA1), sum of topological 
distances between N..N (T(N..N)), sum of topological distances between 
O..O(T(O..O)),etc. 

Geometrical 3D-Balaban index (J3D), span R (SPAN), length-to-breadth ratio by WHIM 
(L/BW), sum of geometrical distances between N..N (G(N..N)), sum of 
geometrical distances between N..O (G(N..O)), sum of geometrical distances 
between O..O (G(O..O)), ect. 

Mol-Walk molecular walk count of order 08 (MWC08), self-returning walk count of order 
05 (SRW05), total walk count (TWC), etc. 

Burden matrix highest eigenvalue n. 1 of Burden matrix / weighted by atomic masses 
(BEHM1), highest eigenvalue n. 7 of Burden matrix / weighted by atomic 
masses (BEHM7), lowest eigenvalue n. 1 of Burden matrix / weighted by 
atomic masses (BELM1), highest eigenvalue n. 1 of Burden matrix / weighted 
by atomic van der Waals volumes (BELV1), highest eigenvalue n. 2 of Burden 
matrix / weighted by atomic Sanderson electronegativities (BEHE2), etc. 

Galvez topological charge index of order 1 (GGI1), topological charge index of order 6 
(GGI6),topological charge index of order 7 (GGI7), global topological charge 
index (JGT), etc. 

2D 

autocorrelation 

Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by 
atomic Sanderson electronegativities (ATS7E), Moran autocorrelation -lag 4 / 
weighted by atomic Sanderson electronegativities (MATS4E), Broto-Moreau 
autocorrelation of a topological structure - lag 3 / weighted by atomic 
Sanderson electronegativities (ATS3E), Broto-Moreau autocorrelation of a 
topological structure - lag 3 / weighted by atomic van der Waals volumes 
(ATS3V), etc. 

Charge maximum positive charge (QPOS), partial charge weighted topological 
electronic charge (PCWTE), etc. 

Aromaticity HOMA Harmonic Oscillator Model of Aromaticity index,RCI;Jug RC index 



 

 

aromaticity indices,HOMT;HOMA total (trial) , etc. 

Randic DP0;molecular profile, SP0;shape profile; SHP;average shape profile index , 
etc. 

RDF Radial Distribution Function - 7.0 / unweighted(RDF070U),Radial Distribution 
Function - 13.5 / unweighted(RDF135U),Radial Distribution Function - 1.0 / 
weighted by atomic masses(RDF010M),Radial Distribution Function - 3.0 / 
weighted by atomic masses(RDF030M),Radial Distribution Function - 4.5 / 
weighted by atomic masses(RDF045M),Radial Distribution Function - 12.5 / 
weighted by atomic masses(RFD125M),Radial Distribution Function - 2.0 / 
weighted by atomic van der Waals volumes(RDF020V),Radial Distribution 
Function - 8.5 / weighted by atomic van der Waals volumes(RDF085V),Radial 
Distribution Function - 1.0 / weighted by atomic Sanderson 
electronegativities(RDF010E), etc. 

3D-MoRSE 3D-MoRSE - signal 01 / unweighted (MOR01U)(01U,02U,…,32U), 3D-
MoRSE - signal 01 / weighted by atomic van der Waals volumes (MOR01V)( 
01V,02V,…,32V), ect. 

WHIM 1st component symmetry directional WHIM index / weighted by atomic 
polarizabilities (G1P), 2st component symmetry directional WHIM index / 
weighted by atomic electrotopological states (G2S), D total accessibility index / 
weighted by atomic van der Waals volumes (DV), etc. 

GETAWAY H autocorrelation of lag 1 / lag2/ lag3 weighted by atomic Sanderson 
electronegativities (H1E,H2E,H3E), total information content on the leverage 
equality (ITH), R maximal autocorrelation of lag 3 / lag4 unweighted 
(R3U+,R4U+), R maximal autocorrelation of lag 6 / weighted by atomic masses 
(R6M+), R maximal autocorrelation of lag 5 / weighted by atomic van der 
Waals volumes (R5V+), R maximal autocorrelation of lag 1 / lag 4 weighted by 
atomic Sanderson electronegativities (R1E+), R maximal autocorrelation of lag 
3 / weighted by atomic polarizabilities (R3P+), etc. 

Functional number of total secondary C(sp3) (NCS), number of ring tertiary C(sp3) 
(NCRHR), number of secondary C(sp2) (n=CHR), number of tertiary amines 
(aliphatic) (NNR2), number of N hydrazines (aromatic) (nN-NPH), number of 
nitriles (aliphatic) (NCN), number of phenols (NOHPH), number of ethers 
(aromatic) (NRORPH), number of solfures (NRSR), etc. 

Atom-Centred CHR3 (C-003), CR4 (C-004), X--CR..X (C-034), Ar-C(=X)-R (C-039), R-
C(=X)-X / R-C#X / X-=C=X (C-040), X--CH..X (C-042), H attached to 
C1(sp3) / C0(sp2) (H-047), RCO-N< / >N-X=X (N-072),R2S / RS-SR (S-107), 
etc. 

connectivity 
indices 

X0(connectivity index chi-0), connectivity index chi-1(x1), average 
connectivity index chi-0(XOA) 

information 
indices 

Uindex(Balaban U index), IC0(information content index), TIC0(total 
information content index) 

edge adjacency 
indices 

EEig01x(Eigenvalue 01),EEig01r(Eigenvalue 01 from edge)  

eigenvalue-based 
indices 

Eig1v(Leading eigenvalue from van der Waals weighted distance 
matrix),SEigm Eigenvalue sum from mass weighted distance 

matrixeigenvalue-based indices 

  
  



 

 

Table 3. The results of MLR analysis with different types of descriptors.  
 

Equation Descriptors (+) effect (-) effect R2 F Q2 SE 

E1 chemical -- Logp 0.72 5.3 0.67 0.21 

E2 constitutional -- NCIC,nR10 0.58 18.52 0.52 0.32 

E3 topological -- STN 0.214 18.53 0.17 0.43 

E4 Walk and path 
counts 

-- PIPC09 0.283 26.81 0.21 0.53 

E5 Connectivity 
indices 

X4A -- 0.63 18.99 0.58 0.34 

E6 Information 
indices 

BIC5 -- 0.38 19.685 0.32 0.36 

E7 2D 
autocorrelation 

GATS1M MATS3E 0.64 10.417 0.58 0.17 

E8 Edge adjacency 
indices 

-- EEIG03X 0.231 20.45 0.18 0.55 

E9 Burden 
eigenvalues 

-- BEHm1 0.63 28.562 0.58 0.28 

E10 Topological 
charge indices 

-- JGI5 0.68 7.50 0.54 0.34 

E11 Eigenvalue-
based indices 

-- LP1 0.25 23.358 0.17 0.54 

E12 Geometrical 
descriptors 

-- G(N..F),DISP
V 

0.46 8.704 0.39 0.41 

E13 RDF 
descriptors 

RDF030M RDF020M 0.65 10.05 0.59 0.23 

E14 3D MoRSE 
descriptors 

-- MOR30M,M
OR24U 

0.69 17.67 0.62 0.38 

E15 WHIM 
descriptors 

E1U,G1M E3U,P1P 0.61 15.25 0.56 0.46 

E16 GETAWAY 
descriptors 

R4M R2V,HOU,HT
M 

0.59 10.88 0.53 0.39 

E17 Fuctional group 
counts 

nBnz, 
nCONN, 

nRCONHR, 
nArX, 

nC=N-N 

nArCN, 
nPyridines 

0.63 15.29 0.59 0.34 

E18 Atom-centred 
fragments 

C-039,C-034 -- 0.56 13.51 0.49 0.24 

E19 Charge 
descriptors 

QMEAN, 
QPOS 

 0.58 13.52 0.52 0.54 



 

 

Table 4. Statistical parameters for testing prediction ability of the MLR, GA-PLS, 
PCR, and FA-MLR models 
  

RMSEp R2p RMSEcv R2
LOOCV R2

 Model 

0.18 0.74 0.21 0.62 0.67 MLR 

0.23 0.87 0.19 0.75 0.81  GA-PLS 

0.22 0.78 0.16 0.68 0.73 PCR 

0.14 0.70 0.15 0.59 0.64 FA-MLR 
R2: Regression Coefficient for Calibration set  
R2

LOOCV: Regression Coefficient for Leave One Out Cross Validation  
RMSEcv: Root Mean Square Error of cross validation 
R2p: Regression Coefficient for prediction set 
RMSEp: Root Mean Square Error of prediction set 
 
  



 

 

Table 5.  Numerical values of factor loading numbers 1–9 for descriptors after  
VARIMAX rotation  
 

 Component  

F1 F2 F3 F4 F5 F6 F7 F8 F9 extraction 

LOGP .190 .152 .038 -.175 .002 .091 .724 -.083 -.123 .646 

NCIC .897 .188 -.017 -.184 -.060 -.107 .013 .137 -.030 .909 

NR10 .774 .073 -.091 -.021 .210 .398 .064 .254 -.063 .887 

X4A -.655 -.587 -.004 -.101 -.173 -.085 .006 .283 .105 .912 

BIC5 -.304 -.314 .059 .025 -.444 .461 -.225 .373 -.035 .795 

MATS3E .456 .541 -.085 -.100 .145 -.301 .304 .094 -.286 .812 

GATS1M -.293 .306 -.664 .155 -.050 .184 -.002 .004 -.106 .691 

BEHM1 -.006 .183 .851 .034 -.011 -.074 -.017 .001 -.147 .785 

JGI3 .004 -.125 -.106 .094 .009 .932 .078 -.006 -.017 .910 

JGI5 .325 .150 -.009 .105 .818 .107 -.040 -.074 .049 .830 

L/Bw -.319 -.787 .151 -.090 -.008 -.197 .129 .042 .059 .813 

DISPV -.059 -.107 .286 -.194 .547 -.357 .240 -.047 -.179 .653 

RDF020M -.176 .316 .653 .314 -.214 -.022 .245 -.027 -.144 .783 

RDF030M .019 .893 .188 -.021 .007 .026 .182 .003 -.023 .869 

RDF025P .485 .724 -.104 -.190 .170 -.219 .190 .045 -.078 .927 

MOR24U .230 -.099 -.006 -.719 .283 -.156 .092 .312 .046 .792 

MOR30M .631 .100 -.125 .102 -.282 -.142 .221 -.394 .014 .738 

MOR32V -.002 .245 .067 .757 .268 .076 -.113 .104 .011 .739 

E1U -.736 -.493 -.028 -.006 -.211 -.136 .002 .148 .011 .872 

E3U .128 .543 .089 .457 -.215 -.196 .215 -.259 .278 .803 

G1M -.073 -.677 .092 -.079 -.148 .237 -.312 -.159 .293 .764 

P1P -.013 -.898 -.035 -.285 .090 .011 .048 .159 -.065 .930 

H0U .150 .257 -.114 .322 .354 -.172 .537 -.259 .226 .767 

HTM .020 .747 .581 .092 .172 -.120 .073 .039 .015 .956 

R4M .079 .709 .444 .218 .029 .062 .052 -.032 .259 .829 

R2V .773 .204 .144 .154 .031 -.063 .225 .018 .401 .900 

nCb .728 -.199 .158 -.150 .180 -.237 -.069 -.010 -.096 .720 

NRCONHR -.592 -.406 .136 .290 -.107 -.205 -.411 .066 .006 .845 

NCONN -.708 .282 -.109 .211 .162 .125 .290 .300 -.136 .872 

NARCN .617 .033 .028 .203 .179 .036 .107 .112 -.012 .480 

nC=N-N -.687 .035 -.107 -.158 .158 -.006 .139 .540 .080 .851 

NArX .140 -.046 .652 -.024 .229 .173 -.350 -.160 .260 .746 

nPyridines -.062 -.069 -.037 -.007 .000 -.009 -.084 -.025 .876 .784 

C-034 .008 -.037 -.064 -.052 -.151 .010 -.119 .839 -.051 .752 

C-039 -.868 -.138 -.051 .082 -.260 -.087 -.092 .070 .016 .870 

QPOS -.367 .881 -.057 .111 .027 -.161 .082 .029 -.038 .962 

QMEAN -.732 .348 -.053 .222 .085 .161 -.304 .123 .048 .853 

% variance 21.769 19.668 7.805 5.894 5.753 5.520 5.368 5.277 4.153 81.208 

  



 

 

  Table 6. The results of FA-MLR analysis with different types of descriptors 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

 
R2 

 
F 

 
Q2 

 
SE 

 
B Std. Error Beta   

    

(Constant) 5.766 .547  10.537 .000 0.64 14.691 0.59 0.24 
MOR30m -0.031 .012 -.303 -2.619 .000     

JGI5 -2.336 0.721 -.442 -3.240 .002     

 
  

  



 

 

Table 7. The results of PCR analysis  
 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

 
R2 

 
F 

 
Q2 

 
SE 

 B Std. Error Beta   
    

(Constant) 4.285 .057  75.368 .000     
F1 -.258 .031 -.409 -4.510 .000 0.73 17.16 0.68 0.34 

F7 -.189 .021 -.300 -3.305 .001     

F6 .124 .027 .197 2.176 .033     

F8 .123 .057 .196 2.159 .034     

 
  



 

 

Tabel 8. Leverage (h) of the external test set molecules for different models. The last 

row (h*) is the warning leverage. 

 

FA-MLR PCR GA-PLS MLR Molecule .no 
0.028202 0.026426 0.084802 0.117418 3 

0.034729 0.03644 0.067963 0.058532 7 

0.035335 0.131804 0.157524 0.087443 10 

0.021066 0.092915 0.093302 0.071099 11 

0.037432 0.03296 0.08314 0.054337 19 

0.040156 0.136844 0.077263 0.081619 39 

0.056011 0.13121 0.134119 0.097168 41 

0.036003 0.152167 0.144921 0.158855 45 

0.068055 0.06149 0.101806 0.045048 69 

0.022631 0.023009 0.13409 0.109807 71 

0.060281 0.041009 0.297308 0.102708 72 

0.063121 0.022111 0.198805 0.105906 73 

0.025659 0.018691 0.127991 0.087529 75 

0.045611 0.021734 0.084609 0.04769 76 

0.016686 0.022526 0.058078 0.081846 82 

0.014426 0.016547 0.07017 0.077447 83 

0.108571 0.191429 0.342857 0.214286 h* 



 

 

Table9. Binding interaction of some studied compounds in active site of enzyme 
 

Compounds  ΔG 

kcal/
mol 

Ki 

(μM) 

Atom of the ligand Receptor/Coenzy
me  

Interaction Distance(A◦) 

1 -8.46 631.45 C=O (isatine) 
C=O (isatine) 

Tyr 156 
2’-OH 
(ribose)NAD+ 

Hydrogen 
bond 
Hydrogen 
bond 

1.80 
1.85 

2 -9.01 248.47 C=O (isatine) 
C=O (isatine) 
Isatine 
Indole 
Indole 

Tyr 156 
2’-OH 
(ribose)NAD+ 
NAD+   -Pyridine 
Phe 94 
Ala 95 

Hydrogen 
bond 
Hydrogen 
bond 
Pi-Pi 
H-Pi 
H-pi 

1.82 
1.83 

3 -8.58 512.32 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2’-OH 
(ribose)NAD+ 

NAD+  -Pyridine 

Hydrogen 
bond 
Hydrogen 
bond 
Pi-Pi 

1.81 
1.89 

4 -8.86 322.58 C=O (isatine) 
C=O (isatine) 
C=S 
Isatine 
Indole 

Tyr 156 
2’-OH 
(ribose)NAD+ 

NH2- NAD+ 
Pyridine- NAD+ 
Phe 94 

Hydrogen 
bond 
Hydrogen 
bond 
Hydrogen 
bond 
Pi-Pi 
H-Pi 

1.77 
1.94 
2.66 

5 -8.67 443.90 C=O (isatine) 
C=O (isatine) 
Isatine 
Indole 

Tyr 156 
2’-OH 
(ribose)NAD+ 
NAD+   -Pyridine 
Phe 94 

Hydrogen 
bond 
Hydrogen 
bond 
Pi-Pi 
H-Pi 

1.78 
1.89 

6 -8.24 912.17 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2’-OH 
(ribose)NAD+ 

NAD+  -Pyridine 
 

Hydrogen 
bond 
Hydrogen 
bond 
Pi-Pi 

1.85 
1.88 

7 -8.51 577.86 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2’-OH 
(ribose)NAD+ 

NAD+  -Pyridine 

Hydrogen 
bond 
Hydrogen 
bond 
Pi-Pi 

1.95 
2.09 

8 -8.46 630.94 C=O (isatine) 
C=O (isatine) 

Tyr 156 
2’-OH 
(ribose)NAD+ 

Hydrogen 
bond 
Hydrogen 
bond 

1.89 
1.95 

9 -8.47 614.00 C=O (isatine) 
NH-thiocarboydrazone 
N-thiocarboydrazone 

Isatine 

2’-OH 
(ribose)NAD+ 

Met 159 
Tyr 156 
Ala 95 

H-Pi 
Hydrogen 
bond 
Hydrogen 
bond 
H-Pi 

 
1.87 
2.35 

14 -7.44 3.52 C=O(benzohydrazid

e) 

C=O(benzohydrazid

Tyr 156 

2´-OH-

ribose(NAD+) 

Hydrogen 

bond 

Hydrogen 

2.22 

2.17 

2.66 



 

 

e) 

C=O(isatine) 

Gly 93 

 

bond 

Hydrogen 

bond 
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Figure 1. Outlier data by Principle Component Analysis before QSAR analysis 
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Figure 2. PLS regression coefficients for the variables used in GA
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PLS model.  

  
  



 

Figure 3. Plot of variables important in projection (VIP) for the descriptors used 

in GA-PLS model. 
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Figure 4. The docked configuration of  2 (A), 14(B), 27(C) and 40 (D) in the binding 
site of FabI 
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