Review Article

POTENTIAL IMPACT OF NUTRITION ON IMMUNE SYSTEM:

PREVENT OR ASSIST COVID-19 RECOVERY

Abstract- In human beings, infection risk and severity differ according to immune competence based on how the immune system grows, matures and declines. Many factors affect the immune system and its competencies, including diet. A number of clinical trials are under way to determine treatment options for coronavirus disease 2019 (COVID-19), caused by extreme acute coronavirus syndrome. Considering Covid-19, enhanced nutrition including micronutrient supplementation to improve the immune system has been recognized as a viable solution to both preventing and alleviating infection severity. Micronutrient deficiencies, especially vitamins A, B complex, C, and D including trace minerals zinc, iron, and selenium, are prevalent among vulnerable populations in general, and among COVID-19 patients in particular, and may likely increase mortality risk. A systematic review of the literature was conducted to identify nutritional strategies that might prevent or assist COVID-19 recovery. There is still unmet need for covering the treatment of the geriatric and pediatric patients.

Keyword- Covid-19, Immunity, Micronutients, Vitamins, Trace minerals, Geriatric Patients, Pediatric Patients

Ser

INTRODUCTION-

The COVID-19 epidemic in 2019–2020 occurred in Wuhan, China. Cases of illness, serious, and death are most likely to belong to male and older people, and are mainly those with chronic disease, such as obesity, diabetes, and coronary disease. The decisive range of spread and consequence of this epidemic is not clear till date as the situation is still evolving. There are approximately 30 corona viruses that can affect humans and animals and their respiratory problems are common both to humans and animals. (2)

Our immune system is the best defense, as there is no registered COVID-19 drug or vaccine. The immune system maintains the innate capacity of our body to protect against pathogens that include viruses, bacteria, fungi, and protozoan's and worms. We don't noticeinfections likeCOVID-19 as long as the immune system is running smoothly. Our immune system is classifiable into three groups. They are, namely, innate immunity (rapid response), adaptive immunity (slow response) and passive immunity (Fig. 1).

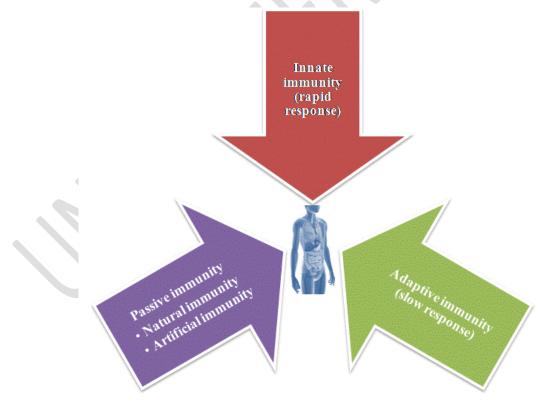


Fig.1. Immunity with subclasses

Passive immunity is again two forms, and we derive natural immunity from our mother and artificial immunity from medication. When our body is affected, skin and the inflammatory response starts. But when our body first experiences certain germs or pathogens, the immune system can't function properly and we get ill.(3)

The first line of defense against pathogens is the innate immune response, consisting ofphysical, chemical and cellular defenses. The adaptive immune response is the second line of defence and is pathogen-specific. Innate immunity emerges immediately as adaptive immunity evolves after exposure to pathogen and is long-lasting, highly selective and maintained by T cells in memory (1)

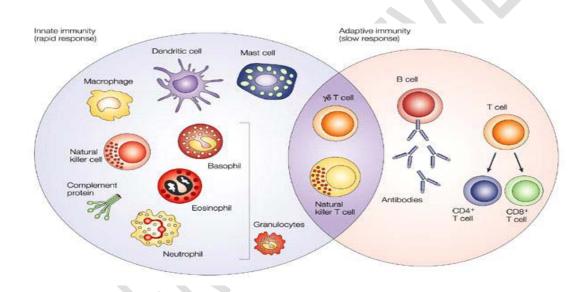
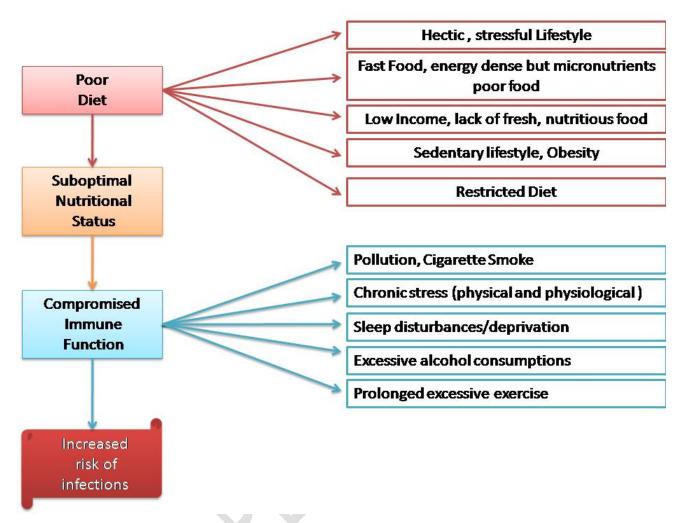
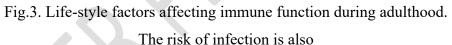




Fig.2. Cells involved in immune responses (3)

A healthy immune system relies on adequate immune functions. In addition, adequate nutrition is vital to maintaining a good supply of the energy sources, macronutrients, and micronutrients needed for immune system growth, maintenance, and expression. (4)

Immunological maturity is achieved by adolescence, and young adults should be well fortified against attack by pathogens. However, many lifestyle factors impact immune skills in healthy adults and raise their risk of infection (Figure 3). In particular, a poor diet, frequently seen in adults with a hectic and stressful lifestyle and ready access to fast food or energy-dense, micronutrient-poor convenience food, may compromise the nutritional status.(4)

Influenced by gender, early programming, vaccination history, pathogen exposure, specific health conditions, and diseases (4)

Nutritional needs of human

Micronutrients are dietary components that contribute significantly to a strong immune system. Important micronutrients including vitamins A , D, E, C, B6, B12, and folate as well as trace elements such as iron, zinc, and selenium, accessible in a range of fresh animal- and plant related foods, help the body 's ability to combat infections (Fig.4).(5)

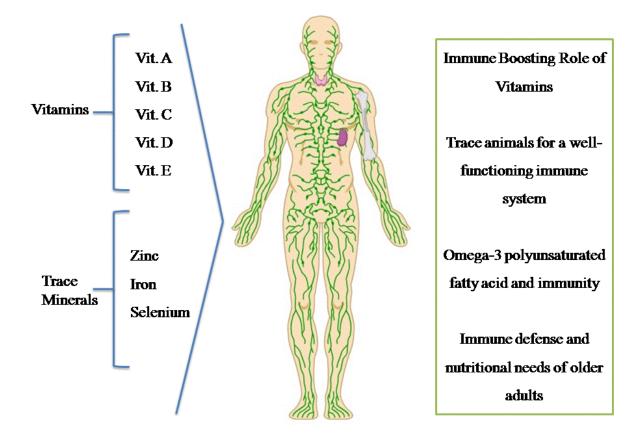


Fig.4 Nutrients to prevent and assist (5)

Prolonged under nutrition and lack of micronutrients affect the cytokine response and the transport of immune cells. Chronic inflammation and malnutrition association affect immune response. However, not only is under nutrition a problem, patients with obesity (excess fat storage) have demonstrated chronic low-grade inflammation in the systemic circulation with higher concentrations of inflammatory markers. The fatty acid content of immune cells influences the modulation of the immune response. It is normal to see altered T-lymphocyte and decreased TNF-a development in this population. The polyunsaturated fatty acids (PUFAs) influence on the immune system through the diet specially focused on omega-3 PUFAs a-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).(6) we will discuss

The potential antiviral activities and the possible viral targets of A,B,C D, and E vitamins. An indepth review of the regulatory role of vitamins A,B,C, D and E in the proper functioning of the Immune System against Pathogens is beyond the reach of this paper. Therefore, we will present in brief our current understanding of each vitamin's essential activities in modulating a wide range of Immune processes and regulating immune response to pathogens.

Vitamin A

Vitamin A and its metabolites are capable of controlling both endogenous and adaptive immune response strength, enhancing the secretion of IL-2 and modulating proliferation , differentiation and signaling as well as the development of cytokines in both T, B and antigen-presenting cells. Metabolites of vitamin A also modulate more complex functional features of the immune response, such as TH1–TH2-cell balance and TReg cell differentiation and TH17 cells. Vitamin A is capable of activating IFN-type intracellular network conducting antiviral activities.(7)VA demonstrates several pharmacological mechanisms against SARS-CoV, namely, cytoprotective action, anti-viral activity, anti-inflammatory effects, and immunity-based immunomodulation. The anti-coronavirus benefits may be the dual efficacy of a nutrient agent and bioactive compound to treat complex disease by synergistically modulating all presumptive multi-targets and multi-pathways. Adjuvant VA supplementation can increase the therapeutic effectiveness of current anti-viral clinical agents and immunotherapy to treat potentially fatal COVID-19.(8)

Vitamin B

Vitamin B complex was historically supposed to be the single vitamin but later it was found that it consists of several different compounds that can be grouped into different categories according to their functional distinctions, members of B complex include thiamine (B1), riboflavin (B2), niacin (B3), pantothenic acid (B5), pyridoxine (B6), biotin (B7), folic acid (B9) and cobalamins (B12). Several members of vitamin B complex are used in our body to promote the defensive role for better health and prevention of diseases by boosting-up the immune system. Vitamin forms falling under this group of vitamin B complex play a vital role by functioning as antioxidants in the body, thus improving the efficacy of the immune response. Members of vitamin B6, B9 and B12. (9)

Folic acid, the synthetic source of folate, is a water-soluble vitamin that plays an essential role in cell division, both in blood-forming organs both bone marrow cell growth. It is also essential in power generation. The body transforms folic acid into tetrahydrofolic acid and is, in effect, an essential part of nucleic acid (DNA and RNA) and protein synthesis. Enlarged red blood cells are found in deficiency of folic acid as well as defects of white and red blood cells due to macrocytic anemia. Vitamin B12 also plays an important role in the development of the immune system as it

is responsible for cell division and production. White blood cells can't grow and expand while B12 is in short supply. Healthy older immunocompetent adults with low serum concentration of vitamin B12 had impaired antibody responses to the pneumococcal polysaccharide vaccine.(10)

Vitamin C

Often recognized as antioxidant and/or enzyme cofactor, Vit C had been developed as an efficient reducing agent. The effect of Vit C on lymphocytes is not fully evident, however it was observed that Vit C controls genes that are responsible for the production of B cells and T cells, and promotes their differentiation similar to their proliferation.Impaired immunity and decreased susceptibility to infection had also been documented after Vit C deficiency, and vitamin C supplementation proved to be useful in the prevention and/or treatment of serious respiratory and systemic infections such as COVID-19 infection.(11) Atherton et al. reported that vitamin C improved immune functions of chick embryo tracheal organ cultures against coronavirus infection. When sepsis happens, the immune cells such as the cytokine are activated, and neutrophils accumulate in the lungs, destroying alveolar capillaries. Vitamin C may help to prevent the excess activation and accumulation of neutrophils, and decrease alveolar epithelial water channel damage. A controlled, randomised trial found that 200 mg/day of vitamin C improved respiratory symptoms and lowered the mortality rate in severely ill elderly patients. However, a meta-analysis reported that vitamin C administration is associated with no significant effect on survival, length of ICU or hospital stay. Further studies are needed to investigate the association of vitamin C with COVID-19.(12)

Vitamin D

Vitamin D is unique: it is a pro-hormone released in the skin during sunlight exposure (UVB radiation at 290–315 nm), typically with lower quantities obtained from food. Many people , especially those living in the northern latitudes (such as the United Kingdom, Ireland, Northern Europe , Canada and the northern parts of the United States, Northern India and China) have low vitamin D status, particularly in winter. Low vitamin D status may be exacerbated during this COVID-19 crisis (eg, due to indoor living and hence reduced sun exposure), and anyone who is self-isolating with limited access to sunlight is advised to take a vitamin D supplement according to their government's recommendations for the general population (ie, 400 IU/day for the UK7 and 600 IU/day for the USA (800 IU for >70 years))8 and the European Union (EU).(14) Vitamin D agonist, calcitriol, exhibited protective effects against acute lung injury by modulating the expression of members of the renin–angiotensin system such as ACE2 in lung tissue,

supporting the role of vitamin D deficiency as a pathogenic factor in COVID-19. Vitamin D receptors (VDRs) are extensively distributed in respiratory epithelial cells and immune cells (B cell, T cell, macrophages, and monocytes). 25-hydroxyvitamin D (25OHD), the major circulating form of vitamin D can be converted to the active form (1,25-dihydroxyvitamin D) in the bronchial epithelium and immune cells. The enzyme, 1 α -Hydroxylase (CYP27B1), required for vitamin D activation, is induced by diverse stimuli, including cytokines and toll-like receptor ligands in the respiratory tract. However, adequate serum levels of 25(OH)D is required to increase levels of 1,25-dihydroxyvitamin D and consequently improve the immune response to respiratory virus infections.(13)

Vitamin E

Vitamin E is essential to preserving older people's physical wellbeing and their immunity. Vitamin E is a effective antioxidant able to protect you against various pathogens, bacteria and viruses. To get the daily dosage of vitamin E, soaked almonds, peanut butter, sunflower seeds, and even hazelnuts should be eaten.(15) Vitamin E has been shown to have a beneficial impact in enhancing the production of T-cell immune synapse and activating signs of T-cell activation. Vitamin E supplementation has restored interleukin-2 (IL-2) development when administered to humans, which increases the overall functioning of T cell proliferation and immune system Thus, increasing dietary sources of vitamin E (Table 1) in the diet of an elderly may be advantageous for their immune function, may provide resistance to infection, and may decrease morbidity because of infections. As the elderly population is more vulnerable to infection, investigating vitamin E for possible health benefits against COVID-19hich would be advantageous for improving T cell proliferation and the overall functioning of the immune system. (16)

Vitamins	Metabolism	Natural Sources	Mechanism to enhance immunity	Marketed products
Vitamins A (23.24,25)	It is ingested as retinyl esters or carotenoids and further metabolized to active compounds such as 11-cis-retinal.	It is obtained from the diet either as <i>all</i> - <i>trans</i> -retinol, retinyl esters or β - carotene, The food supplements are carrots eggs, sweet potatoes, milk etc	It plays rigid roles in cellular immune responses and humoral immune processes. It is a micronutrient that works in promoting growth, maintaining vision, and developing, and protecting	Nutrova Antioxidant Protection, etc.

Table 1: Different type of vitamins which helps in enhancing immunity

			epithelium and mucus.	
			(26)	
Vitamins B (27,28, 29)	It is engrossed by the epithelial cells of the small intestine	The major sources are Meat (red meat, poultry, fish),	Vitamin B6 works for immunity and works towards keeping the immune system strong. It	Sanliv Forte B-Complex, Enzyme with Vitamin B
	through intrinsic factor (IF), a gastric glycoprotein.	Whole grains (brown rice, barley, millet), Legumes (beans, lentils), Eggs and dairy products (milk, cheese) etc. (30)	also helps in building new red blood cells, and further transporting oxygen in the body. (31)	complex Syrup, cyanocobala min, Nascobal etc
Vitamins C (32)	It is known that about 70%–90% of vitamin C is captivated at moderate intakes of 30– 180 mg/day. But if body has above 1 g/day then absorption falls to less than 50%, unmetabolized ascorbic acid is eliminated in the urine	It is a water- soluble vitamin and it is naturally present in some foods, and is also available as a dietary enhancement. Humans, unlike most animals, are not able to synthesize vitamin C endogenously, so it is an essential dietary component	It is required for the biosynthesis of collagen, L-carnitine, and some neurotransmitters; It is also involved in protein metabolism. Its biosynthetic and antioxidant functions have an important role in immune enhancement (33)	Eucee Vitamin C chewable Tablets 500 mg. NOW Foods C- 1000, Viva Labs Vitamin C etc
Vitamins D	For metabolism VD ₃ is converted in the liver to 25- dihydroxyvitami n D ₃ (25(OH)VD ₃). Further, 25(OH)VD ₃ is metabolized in the kidneys to $1,25(OH)_2VD_3$ which is active VD ₃ metabolite (34, 35)	It is synthesized in the skin from 7- dehydrocholester ol5, which depends on sunlight, specifically ultraviolet B radiation (36)	It helps to promotes a more tolerogenic immunological status. The expression of the nuclear vitamin D receptor can be seen on vitamin D- activating enzymes in both T- and B cells (37,38)	Calosto, alfado, Hira D3, Calcit 5G etc.
Vitamins E	Metabolism of v	Main dietary	Vitamin E deficiency	Benvite, Bio

itamin E begins with one cycle of CYP4F2/CYP3 A4-dependent ω-hydroxylation followed by five cycles of subsequent β- oxidation, and forms the water- soluble end- product carboxyethylhyd	sources of vitamin E are fresh green grass and supplemental forms. Wheat germ oil. Sunflower, safflower, and soybean oil. Sunflower seeds. Almonds. Peanuts, peanut butter etc	induces the impairment of both humoral and cellular immunity. Vitamin E deficiency induces the impairment of both humoral and cellular immunity. (40.41)	3Sg, Bio 8888, Bio-E
1	butter etc		

Trace Minerals

Zinc

Zinc comes under the trace minerals category. The body wants it in a very limited amount. It assists in immune cell growth and defense. Zn is known to prevent viral entry, block the production of polyproteins or prevent viral RdRp activity. Zinc is one of the main factors regulating the activity and proliferation of neutrophils, NK cells, macrophages, and T and B lymphocytes as well as the production of cytokines by the immune cells. Zn also provides protection against the adverse effects of ROS, typically produced during inflammatory processes. Free intracellular Zn2+ is essential in extravasation to the site of the infection and uptake and killing of microorganisms by neutrophils. (42) Using recombinant SARS-CoV nsp12, teVelthuis et al. showed that Zn2+ directly inhibited the in vitro RdRp activity. They also reported that specifically, Zn2+ was found to inhibit the SARS-CoVRdRp elongation and template binding. Earlier, it was also shown that Zn2+ inhibited the proteolytic processing of replicasepolyproteins.(43) Altogether, the available data concerning the immunomodulation effect of zinc proposed further study to explore the clinical evidences and to prove the conditional statement of the association with chloroquine (CQ) and Hydroxychloroquine (HCQ). Several theoretical investigations increased intracellular Zn2+ concentration by (CQ) might modulate antiviral effect against SARS-CoV-2. In this perspective, zinc supplementation in the absence of CQ might produce similar effects without adverse side-effects of CQ treatment.(44)

Iron

Iron is one of the most important minerals for every age group. People suffering from iron deficiency are more prone and at risk in developing acute respiratory tract infections. Reduced level of iron results in thymus atrophyand affects the activity of naïve T lymphocytes like zinc. T lymphocyteproliferation decreased up to 50 to 60% due to low iron level. (16) Evidence also suggests that iron chelators can exhibit antiviral effect on HIV through the elevation of intracellular iron efflux and increasing iron exporter ferroportin expression. Despite to date little is known about iron regulation in COVID-19 patients, it could be deduced from other viral infections that iron chelation might be an alternative beneficial adjuvant in treating COVID-19. However, it is important to point out that there is no empirical research to date, so further investigation is needed.(46)

Selenium

Selenium has important effect on both innate and acquired immunity. Selenium enhances the function of T lymphocyte and B lymphocyte and also increases the activity of natural killer cell. A study found that selenium supplementation improved immune function in the human body. The common sources of selenium are fish meat, egg and nuts. Supplementation of selenium also has some adverse effects on the body. (45)The amount of trace elements present in food varies according to the geographical differences of the soil. In this regard, soils in different regions of China have been reported to have the highest and lowest selenium levels in the world. Zhang *et al.* (2020) have found that infected patients from the areas with high selenium levels were more prone to recover from COVID-19. (47)

Effect on the Geriatric Patients

The basic symptoms experienced by patients suffering from COVID-19 consist of fatigue, fever and cough (dry). (48) Less common symptoms include anosmia, headache, production of cough with sputum, chills, joint pains vomiting, and diarrhea. Apart from that in some old age patients unusual symptoms are tachycardia or tachypnea, delirium and hypoxia, sore throat. The symptoms usually lead to critical illness. The major symptoms which involve lungs dysfunction and shortness of breath are seen in 14% of the patients, and there are 5% that develop critical condition.(49) These complication which result in death of the patient include acute respiratory distress syndrome (ARDS) which leads to extended ventilator hold and other problems like cardiac damage, rhythm disturbance, and shock. (48)

The treatment pattern for the patients is in general supportive. For the patients or suspects the management pattern is isolation in anticipation of successful treatments or new vaccine that could cover the disease. In mild cases home isolation is normally preferred but if the patient in later stage develops symptoms like respiratory distress or hypoxia then preference is given to the ventilator support. [50] It has been noted that geriatric patients are mainly vulnerable to severe outcomes in SARS Cov-2 contagion and evaluation and management is challenging. For better care the longer-stay inhabited care homes and hospitals require to urgent health care strategy for older patients. [51]

Effect on the Geriatric Patients

The frequency of COVID-19 is just about 2 percent in children and adolescents. Kids had slight signs and other kids or adults were hardly contaminated. It should be taken into account that children are the most susceptible to respiratory contaminants, but lethal SARS-like viruses have not caused serious cases. [52, 53] Most of the cases reported in children at this time are clustered cases caused by close contact, refers to as "second generation" infection [54]. Nutritional initiatives to increase immunity are something to be discussed for a viral disease such as COVID-19, where no pharmacological approaches for prevention or treatment are currently available and where the exact duration of the termination of the troubling situation is uncertain. [55] The formulating of food-based immune enhancers for COVID-19 patients to enable the proper intake of macro- and micronutrients and, at the same time, to help reduce the severity of disease may be promising approach food related chemistry. [56]

As we understand that children have a very poor immune system, special care must be taken to enhance immunity by increasing the consumption of food and dietary supplements in the form of vitamins and nutrients.

Macronutrients	Food Nutrients
Zinc	Vegetables: green beans, kale
	Animal sources: beef, molluscs (raw), lamb, cheese
	Seeds: flax seeds, squash seeds
Iron	Fruits: apricots (dehydrated), sunflower seeds

 Table 2 Major nutrient food sources that benefit the Immune system [57-58]

	Vegetables: peas, tomatoes, spinach, kale Animal sources: molluscs, egg, veal (ground), organ meat Cereals: whole grains, fortified cereals
Omega-3 PUFAs	chia seeds, flax seeds
Seeds:	Animal sources: shell eggs, fish, seafood
	Nuts: walnuts
Selenium	fish, meat, egg and nuts
Copper	Nuts, shelfish

Conclusion

People with low immunity are more prone for this world pandemic named as COVID-19. To help or boost the immunity, the plant-based foods play vital role by promoting beneficial bacteria in the body. Various vitamins like A, B, C, D, and E are investigated to provide important aspects for improving immunity. Fruits like oranges, papaya, kiwi, and guava are rich in vitamin C, while vegetables like eggplant, bell peppers, beetroots, spinach, and cauliflower are known to be quite rich in vitamin C and are good for immunity. Low- and middle-income countries should strategize to ensure the population at large has access to optimal nutrition to boost the immune system and should provide specific supplementation for treatment of COVID-19 patients, especially those with severe disease. Older adults represent a high-risk population and may be prioritized to receive care in nursing facilities and to receive specialized nutritional support to improve physical and mental outcomes of the COVID-19 pandemic. In the same way, it would be important to carry out separate studies in men and women since it appears that men are more negatively affected by this disease. All this will contribute to making a personalized nutritional approach, and therefore more successful.

Reference-

- Stambas J, Lu C, Tripp RA. Innate and adaptive immune responses in respiratory virus infection:implications for the clinic. Expert Review of Respiratory Medicine. 2020 Nov 1.
- 2. Nasab MG, Saghazadeh A, Rezaei N. SARS-CoV-2–A tough opponent for the immune system. Archives of medical research. 2020 May 30.
- 3. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. Journal of Infection and Public Health. 2020 Jul 14.
- 4. Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrients. 2018 Oct;10(10):1531.
- 5. Akhtar S, Das JK, Ismail T, Wahid M, Saeed W, Bhutta ZA. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutrition Reviews. 2020 Jul 15.
- Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, Garcia-Velasquez E, Savastano S, Colao A. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Critical Reviews in Food Science and Nutrition. 2020 Jul 20:1-25.
- Fiorino S, Gallo C, Zippi M, Sabbatani S, Manfredi R, Moretti R, Fogacci E, Maggioli C, Loffredo FT, Giampieri E, Corazza I. COVID-19 Perfect Storm (Part II): Role of Vitamins as Therapy or Preventive Strategy in Aged People.
- 8. Li R, Wu K, Li Y, Liang X, Tse WK, Yang L, Lai KP. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging.;12.
- 9. Aslam MF, Majeed S, Aslam S, Irfan JA. Vitamins: Key role players in boosting up immune response—A mini review. Vitam. Miner. 2017;6:153.
- 10. Alpert PT. The role of vitamins and minerals on the immune system. Home Health Care Management & Practice. 2017 Aug;29(3):199-202.
- 11. Dehghani-Samani A, Kamali M, Hoseinzadeh-Chahkandak F. The Role of Vitamins on the Prevention and/or Treatment of COVID-19 Infection; a Systematic Review. Modern Care Journal.;17(3).
- 12. BourBour F, MirzaeiDahka S, Gholamalizadeh M, Akbari ME, Shadnoush M, Haghighi M, Taghvaye-Masoumi H, Ashoori N, Doaei S. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus. Archives of Physiology and Biochemistry. 2020 Jul 7:1-0.
- 13. Ebadi M, Montano-Loza AJ. Perspective: improving vitamin D status in the management of COVID-19. European Journal of Clinical Nutrition. 2020 May 12:1-4.
- 14. Lanham-New SA, Webb AR, Cashman KD, Buttriss JL, Fallowfield JL, Masud T, Hewison M, Mathers JC, Kiely M, Welch AA, Ward KA. Vitamin D and SARS-CoV-2 virus/COVID-19 disease. BMJ Nutrition, Prevention & Health. 2020 May.
- 15. Arshad MS, Khan U, Sadiq A, Khalid W, Hussain M, Yasmeen A, Asghar Z, Rehana H. Coronavirus Disease (COVID-19) and Immunity Booster Green Foods: A Mini Review. Food Science & Nutrition.

- Budhwar S, Sethi K, Chakraborty M. A Rapid Advice Guideline for the Prevention of Novel Coronavirus Through Nutritional Intervention. Current Nutrition Reports. 2020 Jun 23:1-0.
- 17. Rahman MT, Idid SZ. Can Zn Be a Critical Element in COVID-19 Treatment?. Biological Trace Element Research. 2020 May 26:1-9.
- 18. TeVelthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS pathogens. 2010 Nov 4;6(11):e1001176.
- 19. Tayyib NA, Ramaiah P, Alsolami FJ, Alshmemri MS. Immunomodulatory Effects of Zinc as a Supportive Strategies for COVID-19. Journal of Pharmaceutical Research International. 2020 Aug 1:14-22.
- 20. Chowdhury AI. Role and Effects of Micronutrients Supplementation in Immune System and SARS-Cov-2 (COVID-19). Asian Journal of Immunology. 2020 Jun 30:47-55.
- Fernández-Quintela A, Milton-Laskibar I, Trepiana J, Gómez-Zorita S, Kajarabille N, Léniz A, González M, Portillo MP. Key Aspects in Nutritional Management of COVID-19 Patients. Journal of Clinical Medicine. 2020 Aug;9(8):2589.
- 22. Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. The American Journal of Clinical Nutrition. 2020 Jun 1;111(6):1297-9.
- 23. Lindsay Perusek and Tadao Maeda. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases. Nutrients. 2013 Jul; 5(7): 2646–2666.
- 24. Diana N. D'Ambrosio, Robin D. Clugston, and William S. Blaner. Vitamin A Metabolism: An Update. Nutrients. 2011 Jan; 3(1): 63–103.
- 25. Hawi Debelo, Janet A Novotny, Mario G Ferruzzi. Vitamin A. Adv Nutr. 2017 Nov; 8(6): 992–994.
- 26. Mario Riera Romo, Dayana Pérez-Martínez and Camila Castillo Ferrer. Innate immunity in vertebrates: an overview. Immunology. 2016 Jun; 148(2): 125–139.
- 27. Hashim M. Al-Awami; Avais Raja; Michael P. Soos. Physiology, Intrinsic Factor (Gastric Intrinsic Factor). StatPearls Publishing; 2020 Jan- till date.
- 28. David O. Kennedy. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients. 2016 Feb; 8(2): 68.
- 29. Talitha C. Ford, Luke A. Downey, Tamara Simpson, Grace McPhee, Chris Oliver, and Con Stough. The Effect of a High-Dose Vitamin B Multivitamin Supplement on the Relationship between Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial. Nutrients. 2018 Dec; 10(12): 1860.
- 30. Wacław Laskowski, Hanna Górska-Warsewicz, and Olena Kulykovets. Meat, Meat Products and Seafood as Sources of Energy and Nutrients in the Average Polish Diet. Nutrients. 2018 Oct; 10(10): 1412.
- 31. Heimo Mairbäurl. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol. 2013; 4: 332.

- Ali A. Albahrani and Ronda F. Greaves. Fat-Soluble Vitamins: Clinical Indications and Current Challenges for Chromatographic Measurement. Clin Biochem Rev. 2016 Feb; 37(1): 27–47.
- 33. Alina Kepka, Agnieszka Ochocinska, Małgorzata Borzym-Kluczyk, Ewa Skorupa, Beata Stasiewicz-Jarocka, Sylwia Chojnowska and Napoleon Waszkiewicz. Preventive Role of L-Carnitine and Balanced Diet in Alzheimer's Disease. Nutrients. 2020 Jul; 12(7): 1987.
- 34. Sylvia Christakos, Dare V. Ajibade, Puneet Dhawan, Adam J. Fechner, and Leila J. Mady. Vitamin D: Metabolism. Endocrinol Metab Clin North Am. 2010 Jun; 39(2): 243–253.
- 35. Daniel D. Bikle. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem Biol. 2014 Mar 20; 21(3): 319–329.
- 36. Matthias Wacker and Michael F. Holick. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 2013 Jan 1; 5(1): 51–108.
- 37. Ola Engelsen. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status. Nutrients. 2010 May; 2(5): 482–495.
- 38. Barbara Prietl, Gerlies Treiber, Thomas R. Pieber, and Karin Amrein. Vitamin D and Immune Function. Nutrients. 2013 Jul; 5(7): 2502–2521.
- 39. Lisa Schmölz, Marc Birringer, Stefan Lorkowski, and Maria Wallert. Complexity of vitamin E metabolism. World J Biol Chem. 2016 Feb 26; 7(1): 14–43.
- 40. Ga Young Lee and Sung Nim Han. The Role of Vitamin E in Immunity. Nutrients. 2018 Nov; 10(11): 1614.
- 41. Erin Diane Lewis, Simin Nikbin Meydani and Dayong Wu. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019 Apr; 71(4): 487–494.
- 42. Rahman MT, Idid SZ. Can Zn Be a Critical Element in COVID-19 Treatment?. Biological Trace Element Research. 2020 May 26:1-9.
- 43. TeVelthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS pathogens. 2010 Nov 4;6(11):e1001176.
- 44. Tayyib NA, Ramaiah P, Alsolami FJ, Alshmemri MS. Immunomodulatory Effects of Zinc as a Supportive Strategies for COVID-19. Journal of Pharmaceutical Research International. 2020 Aug 1:14-22.
- 45. Chowdhury AI. Role and Effects of Micronutrients Supplementation in Immune System and SARS-Cov-2 (COVID-19). Asian Journal of Immunology. 2020 Jun 30:47-55.
- 46. Fernández-Quintela A, Milton-Laskibar I, Trepiana J, Gómez-Zorita S, Kajarabille N, Léniz A, González M, Portillo MP. Key Aspects in Nutritional Management of COVID-19 Patients. Journal of Clinical Medicine. 2020 Aug;9(8):2589.
- 47. Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. The American Journal of Clinical Nutrition. 2020 Jun 1;111(6):1297-9.
- Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061– 1069.

- 49. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72,314 cases from the chinese center for disease control and prevention. JAMA. 2020;323:1239–1242.
- 50. Aman Nanda, Naga Venkata Rama Krishna Vura, and Stefan Gravenstein. COVID-19 in older adults. Aging Clin Exp Res. 2020 May 10 : 1–4.
- 51. Fabio Perrotta, Graziamaria Corbi, Grazia Mazzeo, Matilde Boccia, Luigi Aronne, Vito D'Agnano, Klara Komici, Gennaro Mazzarella, Roberto Parrella, and Andrea Bianco. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res. 2020 Jun 16 : 1–10.
- 52. Lyu, J., Miao, T., Dong, J., Cao, R., Li, Y., & Chen, Q. (2020). Reflection on lower rates of COVID-19 in children: Does childhood immunizations offer unexpected protection?. Medical Hypotheses, 109842.
- 53. Zimmermann, P., & Curtis, N. (2020). Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. The Pediatric infectious disease journal, 39(5), 355.
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506.
- 55. Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews.
- Di Matteo, G., Spano, M., Grosso, M., Salvo, A., Ingallina, C., Russo, M., ... & Mannina, L. (2020). Food and COVID-19: Preventive/Co-therapeutic Strategies Explored by Current Clinical Trials and in Silico Studies. Foods, 9(8), 1036.
- 57. Budhwar, S., Sethi, K., & Chakraborty, M. (2020). A Rapid Advice Guideline for the Prevention of Novel Coronavirus Through Nutritional Intervention. Current Nutrition Reports, 1-10.
- 58. Chowdhury, A. I. (2020). Role and Effects of Micronutrients Supplementation in Immune System and SARS-Cov-2 (COVID-19). Asian Journal of Immunology, 47-55.