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ABSTRACT. In the article, the notion of a relative extension of continuous map-
pings is defined. The relative extension of continuous mappings is the generalization
of the notion of a relative retract in topological spaces. They have been applied to the
fixed point theory.

1 Introduction
In the article [9] we have introduced the notion of a relative retract in metric spaces
and defined the class of absolute relative retracts (ARR) and absolute neighborhood
retract (ANRR). The relative retracts are an essential generalization of the retracts
in the sense of Borsuk. In articles [9, 10, 11] their properties are studied with the use
of new topological tools (relative homotopy, relative contractability). Relative retracts
are applied to fixed point theory and the theory of coincidence (see [9, 10]) as well as
applied to the study of global and local properties of metrizable spaces (see [11]). In this
article we define the relative extension of continuous maps that is the generalization
of the notion of relative retracts in topological spaces (not necessarily metrizable).
We also define two classes of topological spaces: relative extension (ESR) and relative
neighborhood extension (NESR). These spaces are an essential generalization of spaces
ES and NES respectively, considered by G. Fournier and A. Granas in the article [4].
The relative extension of continuous maps is applied to the theorems on the fixed
points of multivalued compact and noncompact maps. This article is an integral part
of relative retracts theory and relative homotopy and should be regarded in the context
of [9, 10, 11].
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2 Preliminaries
Throughout this paper all spaces are assumed to be Hausdorff topological spaces and
all singlevalued mappings are continuous. A continuous mapping f : X → Y is called
perfect if for every y ∈ Y the set f−1(y) is nonempty and compact and f is a closed
map. Let X and Y be two spaces and assume that for every x ∈ X a nonempty
subset φ(x) of Y is given. In such a case we say that φ : X ( Y is a multivalued
mapping. Let H∗ be the C̆ech homology functor with compact carriers and coefficients
in the field of rational numbers Q from the category of Hausdorff topological spaces and
continuous maps to the category of a graded vector space and linear maps of degree
zero. Thus H∗(X) = {Hq(X)} is a graded vector space, Hq(X) being a q-dimensional
C̆ech homology group with compact carriers of X. For a continuous map f : X → Y ,
H∗(f) is the induced linear map f∗ = {fq} where fq : Hq(X) → Hq(Y ) ([5]). A set X
is acyclic if:

(i) X is nonempty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

Let u : E → E be an endomorphism of an arbitrary vector space. Let us put

N(u) = {x ∈ E : un(x) = 0 for some n},

where un is the n-th iterate of u and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have
the induced endomorphism ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible
provided dimẼ < ∞. Let u = {uq} : E → E be an endomorphism of degree zero of a
graded vector space E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial.

For such a u, we define the (generalized) Lefschetz number Λ(u) of u by putting

Λ(u) =
∑
q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (comp. [5]). The following important property
of a Leray endomorphism is a consequence of a well-known formula tr(u ◦ v) = tr(v ◦u)
for the ordinary trace.

Proposition 2.1. [5] Assume that in the category of graded vector spaces the following
diagram commutes

E′ -u
E′′

6
u′′

E′′
Z

Z
Z

Z}
v

-E′

6
u′

u
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If one of u′, u′′ is a Leray endomorphism, then so is the other; and Λ(u′) = Λ(u′′).

An endomorphism u : E → E of a graded vector space E is called weakly nilpotent if
for every q ≥ 0 and for every x ∈ Eq , there exists an integer n such that unq (x) = 0.
Since, for a weakly nilpotent endomorphism u : E → E, we have N(u) = E, we get:

Proposition 2.2. If u : E → E is a weakly nilpotent endomorphism, then Λ(u) = 0.

A perfect map p : X → Y is called Vietoris provided for every y ∈ Y the set p−1(y) is
acyclic. We recall that the composition of two Vietoris mappings is a Vietoris mapping
and if p : X → Y is a Vietoris map then p∗ : H∗(X) → H∗(Y ) is an isomorphism (see
[5]). Let φ : X ( Y be a multivalued map. We recall that the map φ is admissible
(s-admissible) (see, [5]) if there exist a Vietoris map p : Z → X and a continuous map
q : Z → Y such that for each x ∈ X

q(p−1(x)) ⊂ φ(x) (q(p−1(x)) = φ(x)) (we will write (p, q) ⊂ φ ((p, q) = φ)).

Let φ : X ( Y be a map and let A ⊂ X be a nonempty set. We denote φA : A ( X
a map given by the formula φA(x) = φ(x) for each x ∈ A.

Definition 2.3. A topological vector space is called Klee admissible provided for every
compact K ⊂ E and for every open neighborhood of zero V in E there exists a continuous
map πV : K → E such that:
(2.3.1) (x− πV (x)) ∈ V for every x ∈ K.
(2.3.2) there exists a natural number n = nK such that πV (K) ⊂ En, where En is an
n-dimensional subspace of E.

It is well known that any locally convex space is Klee admissible. We recall that a
multivalued map φ : X ( Y is compact, if the set φ(X) ⊂ Y is compact.

Theorem 2.4. [5] Let E be a Klee admissible space and let U ⊂ E be an open set.
Consider a diagram:

U
p←−−−− Z

q−−−−→ U,

p is Vietoris and q is compact. Then q∗◦p−1∗ is a Leray endomorphism and Λ(q∗◦p−1∗ ) ̸=
0 implies that p and q have a coincidence point, that is, there is a point z ∈ Z such that
p(z) = q(z).

Theorem 2.5. [6] Let X be normal, A ⊂ X closed, and F0 : A → E a compact map
into a normed space E. Then F0 is extendable to a compact map F : X → E.

Remark 2.6. Let X be normal, A ⊂ X closed, and F0 : A → U a compact map into
an open set U ⊂ E, where E is a normed space. Then F0 is extendable to a compact
map F : V → U , where V ⊂ X is some open neighborhood of A.

Proof. Let F0 : A → U be a compact map, that is, F0(A) ⊂ U is a compact set,
where A ⊂ X is closed and U ⊂ E is an open set. There exists an open neighborhood
V1 ⊂ U of F0(A) such that V 1 ⊂ U . From Theorem 2.5 there exists a compact extension
F : X → E of F0 : A → U ⊂ E. Let V = F−1(V1). We define a map F̃ : V → U by
the formula F̃ (x) = F (x) for each x ∈ V . We observe that the map F̃ is a compact
extension of F0 and the proof is complete.
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Definition 2.7. (see [4]) A space M is an extension (resp. neighborhood extension)
space provided for any compact pair (X,A) with A ⊂ X closed and any map f0 : A→M
there is an extension f : X → M (resp. neighborhood extension f : U → M) of f0 over
X (resp. over the neighborhood of A in X). The classes of the extension spaces and
the neighborhood extension spaces will be denoted by ES (written M ∈ ES) and NES
(written M ∈ NES), respectively.

Let X ∈ ANR and let Y ⊂ X be a compact and nonempty subset. We recall that Y
is movable in X provided every neighborhood U of Y admits a neighborhood V of Y ,
V ⊂ U , such that for every neighborhood W of Y , W ⊂ V , there exists a homotopy
H : V × [0, 1]→ U with

(1) H(x, 0) = x and H(x, 1) ∈W, for any x ∈ V.

Let y0 ∈ Y . We recall that Y has a trivial shape in X provided every neighborhood
U of Y admits a neighborhood V of Y , V ⊂ U , such that there exists a homotopy
H : V × [0, 1]→ U with

(2) H(x, 0) = x and H(x, 1) = y0, for any x ∈ V.

Let Y be a compact and metrizable space. We say that Y is movable (has a trivial
shape) provided there exists a space X ∈ ANR and an embedding h : Y → X such
that h(Y ) is movable (has a trivial shape) in X.

Remark 2.8. We recall that in the metrizable spaces the property of movable (trivial
shape) is an absolute property, that is, if a compact set Y is movable (of trivial shape)
in some ANR X and h : Y → X ′ is an embedding into an ANR X ′, then h(Y ) is
movable (of trivial shape) in X ′ (see [1]).

Remark 2.9. [1] We know that movable spaces are of the following types, among others:
AR, ANR, FAR and FANR.

3 The families of sets
In this paragraph a few necessary notions will be defined.

Definition 3.1. Let T be a Tychonoff cube, X ⊂ T be a compact space and let x0 ∈ X
be an arbitrary point. We will say that X has a trivial shape in T provided every
neighborhood U ⊂ T of X admits a neighborhood V of X, V ⊂ U , such that there exists
a homotopy H : V × [0, 1]→ U with

H(x, 0) = x and H(x, 1) = x0, for any x ∈ V, (see (2)).

A compact space X has a trivial shape if there exists a Tychonoff cube T and an
embedding h : X → T such that h(X) has a trivial shape in T.

Proposition 3.2. Let S be a nonempty set and let X =
∏

s∈S Xs. Assume that for
each s ∈ S there exists a Tychonoff cube Ts such that Xs ⊂ Ts. The space X has a
trivial shape in T =

∏
s∈S Ts if and only if for each s ∈ S a space Xs has a trivial shape

in Ts.
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Proof. Assume that X has a trivial shape in T. Let λ ∈ X, λ = {λs} and let a ∈ S. We
show that Xa has a trivial shape in Ta. Let Ua ⊂ Ta be a compact neighborhood of Xa.
The set U =

∏
s∈S Us, where Us = Ts for each s ̸= a is a compact neighborhood of X in

T =
∏

s∈S Ts. There exists a compact neighborhood V =
∏

s∈S Vs ⊂ U of X, Vs = Ts

for each s /∈ {s1, s2, .., sn, a} such that there exists a homotopy Hλ : V × [0, 1]→ U with

Hλ(x, 0) = x and Hλ(x, 1) = λ, for any x ∈ V.

We have
Va × [0, 1]

h−−−−→ V × [0, 1]
Hλ−−−−→ U

π−−−−→ Ua,

where h is a homeomorphism given by the formula h(va, t) = ({ys}, t), ya = va, ys = λs
for s ̸= a and π is a projection. We define a homotopy Ha : Va × [0, 1] → Ua by the
formula:

Ha = π ◦Hλ ◦ h.

Assume now that for each s ∈ S a space Xs has a trivial shape in Ts. Let λ ∈ X,
λ = {λs} be an arbitrary point and let U =

∏
s∈S Us ⊂ T be a compact neighborhood

of X in T such that for each s /∈ {s1, s2, ..., sn}, Us = Ts. From the assumption for each
k = 1, ..., n there exists a compact neighborhood Vsk ⊂ Usk of Xsk and a homotopy
Hsk : Vsk × [0, 1]→ Usk with

Hsk(x, 0) = x and Hsk(x, 1) = λsk , for any x ∈ Vsk .

Let V =
∏

s∈S Vs, Vs = Ts for any s /∈ {s1, s2, ..., sn}. We define a homotopy Hλ :
V × [0, 1]→ U by the formula

Hλ({vs}, t) = {Hs(vs, t)}, for any v = {vs} ∈ V,

where
Hs : Vs × [0, 1] = Ts × [0, 1]→ Ts = Us

for each s /∈ {s1, s2, ..., sn} is a homotopy such that

Hs(vs, 0) = vs and Hs(vs, 1) = λs

for any vs ∈ Vs (for each s ∈ S the space Ts is contractible) and the proof is complete.

From the continuity of the C̆ech homology, we get:

Proposition 3.3. Let S be a nonempty set and let X =
∏

s∈S Xs, where for each s ∈ S,
the space Xs is compact. The space X is acyclic if and only if for each s ∈ S a space
Xs is acyclic.

Proof. Assume that X is acyclic and let x ∈ X, x = {xs} be an arbitrary point. Let
s0 ∈ S. We show that a space Xs0 is acyclic. We have a diagram

Xs0
h−−−−→ X

πs0−−−−→ Xs0 ,
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where h(zs0) = {ys}, ys = xs for each s ̸= s0, ys0 = zs0 and πs0 is a projection. We
observe that

πs0 ◦ h = IdXs0
.

Hence the map
h∗ : H∗(Xs0)→ H∗(X)

is a monomorphism, so Xs0 is an acyclic space. Assume now that for each s ∈ S the
space Xs is acyclic. From the mathematical literature (see, [5]) we know that if the
spaces X1, ..., Xn are acyclic then the space X1 × ...×Xn is acyclic. Let Σ = {ξ ⊂ S :
ξ is a finite set}. Then (Σ,≤) is a directed set, where ≤ is an inclusion. We have

X = lim
←
{Yξ, πξζ ,Σ},

where Yξ = Xs1×Xs2×...×Xsn , ξ = {s1, s2, ..., sn} ⊂ S and for each ζ ≤ ξ, πξζ : Yξ → Yζ

is a projection. Hence and from the continuity of the C̆ech homology the space X is
acyclic and the proof is complete.

Let Q be a Hilbert cube. In particular, we have:

Proposition 3.4. Let S be a nonempty set and let X =
∏

s∈S Xs. Assume that, for
each s ∈ S, Xs is a compact subset of Qs = Q. The space X has a trivial shape in
T =

∏
s∈S Qs if and only if for each s ∈ S a space Xs has a trivial shape in Qs.

Proposition 3.5. Let X ⊂ T has a trivial shape in T then it’s acyclic.

Proof. We denote by

Σ = {K; K is a compact neighborhood of X in T}

a directed set from the inclusion ≤, that is, (ξ ≤ ζ)⇔ (Kζ ⊂ Kξ) for each ξ, ζ ∈ Σ and
let

X = {Kζ , j
ζ
ξ , Σ}

be an inverse system, where for ξ ≤ ζ, jζξ : Kζ → Kξ is an inclusion. We observe
that from the assumption the inclusion iξ : X → Kξ is homotopic to a constant map
Cξ : X → Kξ, Cξ(x) = x0 for each x ∈ X, for each ξ ∈ Σ, where x0 ∈ X is an arbitrary
point. Hence and from the continuity of the C̆ech homology we have

(lim
←
iξ)∗ = (lim

←
Cξ)∗,

where
(lim
←
iξ)∗ : H∗(X)→ H∗(lim←

X)

is an isomorphism, so X is acyclic and the proof is complete.
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Let X be a space. A perfect map α : Z → X is cell-like if for each compact set K ⊂ X
there exist a Tychonoff cube T and an embedding h : α−1(K) → T such that for each
x ∈ K the set h(α−1(x)) has a trivial shape in T. Let ∆ be family sets of compact and
nonempty spaces such that the following conditions are satisfied:

(3) if A is a single-element space, then A ∈ ∆.

(4) If, for each s ∈ S, As ∈ ∆ then

(∏
s∈S

As

)
∈ ∆,

where S is any, nonempty set. For each A ∈ ∆ there exists a Tychonoff cube T and an
embedding h : A→ T such that

(5) h(A) ∈ ∆.

If A ∈ ∆ is a metrizable space then there exists an embedding h : A→ Q such that

(6) h(A) ∈ ∆

where Q is a Hilbert cube. Let X be a space. We will say that a perfect map α : Z → X
is a ∆ map if for each compact set K ⊂ X there exist a Tychonoff cube T and an
embedding h : α−1(K) → T such that for each x ∈ K the set h(α−1(x)) ∈ ∆. We
observe that if α ∈ D(X) then for each nonempty set B ⊂ X (not necessarily compact)
αα−1(B) ∈ D(B), where αα−1(B) is a restriction of α to the set α−1(B). We will denote
by

(7) D(X) = {α : Z → X; α is a ∆ map}.

The examples of families of D type sets:

(8) HOM(X) = {α : Z → X; α is a homeomorphism},

(9) CELL(X) = {α : Z → X; α is a cell-like map},

(10) V(X) = {α : Z → X; α is a Vietoris map}.

We observe that

(11) HOM(X) ⊂ CELL(X) ⊂ V(X).

4 Relative extensions of maps
In this paragraph we will define the notion of the relative extension of maps and we
will prove a few of their properties.
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Definition 4.1. We say that a space X is a relative extension (relative neighborhood
extension) (we write X ∈ ESR(D), (X ∈ NESR(D))) if for each compact set K ⊂ X
there exists a space ZK , αK : ZK → K, αK ∈ D(K) such that for each compact space
Y , for each closed set A ⊂ Y and for each continuous map f : A→ ZK the map αK ◦ f
has a continuous extension F : Y → X (F : U → X), where U ⊂ Y is some open set
such that A ⊂ U , that is the following diagram:

ZK
j◦αK−−−−→ Xxf

xF

A
i−−−−→ T,

is commutative, where T = Y (T = U), i : A ↩→ T and j : K ↩→ X are inclusions.

Proposition 4.2. X ∈ NESR(HOM)(ESR(HOM))⇔ X ∈ NES(ES).

Proof. Let X ∈ NESR(HOM) and let f : A→ X be a continuous map, where A ⊂ Y
is a closed subset of a compact space Y . We denote by K = f(A). There exists a map
αK : ZK → K, αK ∈ HOM(K) such that the conditions of Definition 4.1 are satisfied.
We have a diagram

A
f̃−−−−→ K

α−1
K−−−−→ ZK

αK−−−−→ K
i−−−−→ X,

where f̃(y) = f(y) for each y ∈ A, α−1K is an inverse homeomorphism and i is an
inclusion. There exists an extension G : U → X of αK ◦ (α−1K ◦ f̃) = f̃ , where U ⊂ Y is
some open neighborhood of A. The proof in the opposite direction is obvious and the
proof of the second part of this Proposition is analogical.

Let X,Y be metrizable spaces. We recall that a space X is a D-retract of Y , if there
exist a metrizable space Z ⊂ Y , α : Z → X, α ∈ D(X) and r : Y → X such that
r ◦ i = α, where i : Z ↩→ Y is an inclusion. We will say that the map r is a D-retraction
and a space Z is a D-carrier of X in Y . We will write X ∈ ANRR(D) (X ∈ ARR(D))
if there exists a normed space E, an open set V ⊂ E such that X is a D-retract of V
(E)(see, [9]). We observe that if α : X → Y is a perfect (proper) map such that, for each
y ∈ Y , the set α−1(y) has a trivial shape then α ∈ CELL(Y ) (see (6) and Proposition
3.4). It is obvious that if α : X → Y is a homeomorphism then α ∈ HOM(Y ).

Proposition 4.3. Let X be a metrizable space.

(X ∈ ANRR(D)(ARR(D)))⇒ (X ∈ NESR(D)(ESR(D))).

Proof. Let X be a metrizable space and let X ∈ ANRR(D). There exist a normed
space E, an open set V ⊂ E such that X is a D-retract of V , that is, there exist a space
Z ⊂ V , α : Z → X, α ∈ D(X) and r : V → X such that r ◦ i = α, where i : Z ↩→ V
is an inclusion. Let K ⊂ X be a compact set, ZK = α−1(K) and αK : ZK → K,
αK(z) = α(z) for each z ∈ ZK , where αK ∈ D(K). Let’s take a compact space Y , a
closed set A ⊂ Y and a continuous map f : A→ ZK . We have a following diagram:

A
f−−−−→ ZK

j−−−−→ Z
i−−−−→ V

r−−−−→ X,
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where j is an inclusion. There exists an extension G : U → V of i ◦ j ◦ f (see, Remark
2.6), where U ⊂ Y is some open neighborhood of A. We define an extension F : U → X
of αK ◦ f by the formula

F = r ◦G.

The proof of the second part of this Proposition is analogical.

Let X,Y,Xi be compact spaces, i = 1, 2. It’s clear that if α ∈ D(X) and h ∈ HOM(Y ),
h : X → Y then (h ◦ α) ∈ D(Y ). We observe also that if α1 ∈ D(X1) and α2 ∈ D(X2)
then (α1 × α2) ∈ D(X1 ×X2).

Proposition 4.4. ((X1 ×X2) ∈ NESR(D)(ESR(D)) ⇔ (X1 ∈ NESR(D)(ESR(D))
and X2 ∈ NESR(D)(ESR(D))).

Proof. Let (X1 ×X2) ∈ NESR(D) and let K ⊂ X1(K ⊂ X2) be a compact set. Then
a set K×{x2} ⊂ X1×X2 ({x1}×K ⊂ X1×X2) is compact, where (x1, x2) ∈ X1×X2

is an arbitrary point. From the assumption there exists a map αK : ZK → K × {x2}
(αK : ZK → {x1}×K), αK ∈ D(K×{x2}) (αK ∈ D({x1}×K)) such that the conditions
of Definition 4.1 are satisfied. Let T be a compact space and let f : A → ZK be a
continuous map, whereA ⊂ T is a closed set. There exists an extensionG : U → X1×X2

of αK ◦ f , where U ⊂ T is an open neighborhood of A. We define a map F : U → X1

(F : U → X2) by the formula

F = π1 ◦G (F = π2 ◦G),

where πi : X1 × X2 → Xi are projections, i = 1, 2. Now, let X1 ∈ NESR(D) and
X2 ∈ NESR(D) and let K ⊂ X1 ×X2 be a compact set. We denote by Ki = πi(K),
where πi : X1×X2 → Xi are projections, i = 1, 2. There exists a map αKi : ZKi → Ki,
αKi ∈ D(Ki), i = 1, 2 such that the conditions of Definition 4.1 are satisfied. It’s
obvious that K ⊂ K1 ×K2. Let α = αK1 × αK2 , ZK = α−1(K) and αK : ZK → K,
αK(z) = α(z) for each z ∈ ZK . Let T be a compact space and let f : A → ZK be a
continuous map, where A ⊂ T is a closed set. For i = 1, 2 we have

A
f−−−−→ ZK

j−−−−→ ZK1 × ZK2

π′
i−−−−→ ZKi

αKi−−−−→ Ki
ji−−−−→ Xi,

where j, ji are inclusions and π′i : ZK1 × ZK2 → ZKi are projections, i = 1, 2. There
exist extensions Gi : Vi → Xi of αKi ◦(π′i◦j◦f), where Vi ⊂ T some open neighborhoods
of A, i = 1, 2. Let U = V1 ∩ V2. We define an extension F : U → X1 ×X2 of αK ◦ f by
the formula

F (t) = (G1(t), G2(t)) for each t ∈ U.

The proof of the second part of this Proposition is analogical.

Proposition 4.5. Let S be a nonempty set and let X =
∏

s∈S Xs. If X ∈ NESR(D)
then Xs ∈ NESR(D) for each s ∈ S.

Proof. Assume that X ∈ NESR(D). Let s0 ∈ S, K ⊂ Xs0 be a compact set and let
{xs} ∈ X be an arbitrary point. For P =

∏
s∈S Ys, where for each s ̸= s0, Ys = {xs}

and Ys0 = K there exists a map αP ∈ D(K), αP : ZP → P such that the conditions

9
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of Definition 4.1 are satisfied. Let ZK = ZP and let αK = h ◦ αP , where h : P → K
is a homeomorphism (restriction of a projection πs0 : X → Xs0). Let f : A → ZK be
a continuous map, where A is a closed subset of a compact space Y . There exists an
extension G : U → X of αK ◦ f , where U ⊂ Y is an open neighborhood of A. We
define an extension F : U → Xs0 of αK ◦ f by the formula F = πs0 ◦G and the proof
is complete.

Proposition 4.6. Let S be a nonempty set and let X =
∏

s∈S Xs. A space X ∈
ESR(D) if and only if Xs ∈ ESR(D) for each s ∈ S.

Proof. Assume that X ∈ ESR(D). Then from the proof of Proposition 4.5 it results
that Xs ∈ ESR(D) for each s ∈ S. Let for each s ∈ S the space Xs ∈ ESR(D) and
let K ⊂ X be a compact set. We denote by Ks = πs(K), where πs : X → Xs is a
projection for each s ∈ S. For each s ∈ S we take a map αKs ∈ D(Ks), αKs : ZKs → Ks

such that the conditions of Definition 4.1 are satisfied. It’s obvious that K ⊂
∏

s∈SKs.
Let α =

∏
s∈S αKs :

∏
s∈S ZKs →

∏
s∈SKs, ZK = α−1(K) and let αK : ZK → K be

a restriction of α. It’s clear that αK ∈ D(K). Let f : A → ZK be a map, where A is
a closed subset of a compact space Y and let π1s : ZK → ZKs be a projection for each
s ∈ S. We have a following diagram:

A
f−−−−→ ZK

π1
s−−−−→ ZKs

αKs−−−−→ Ks
is−−−−→ Xs,

where is is an inclusion, for each s ∈ S. From the assumption, for each s ∈ S, there
exists an extension Fs : Y → Xs of αKs ◦ (π1s ◦ f). We define an extension F : Y → X
of αK ◦ f by the formula:

F (y) = {Fs(y)} for each y ∈ Y

and the proof is complete.

Example 4.7. Let p : Q → X be a cell-like map such that X is a metrizable and
non-movable space (see, [7]), where Q is a Hilbert cube. Let S be a nonempty set
(card(S) > ℵ0) and let Y =

∏
s∈S Ys, where Ys = X for each s ∈ S. We define a cell-

like map α : T→ Y by the formula α = {ps}s∈S, where T =
∏

s∈S Qs is a Tychonoff cube
and for each s ∈ S, Qs = Q and ps = p. It’s clear that Y ∈ ESR(CELL) (in particular,
Y ∈ NESR(CELL)) is a non-metrizable space. We show that Y /∈ NES. Assume that
Y ∈ NES. Then, from Proposition 4.5, X ∈ NES. Hence X is a neighborhood retract
of Q, so X ∈ ANR, but it is a contradiction, since X is a non-movable space (see
Remark 2.9).

5 The abstract morphism
The symbol D(X,Y ) will denote the set of all diagrams of the form

X
p←−−−− Z

q−−−−→ Y,
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where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous map.
Each such diagram will be denoted by (p, q). Let (p1, q1) ∈ D(X,Y ) and (p2, q2) ∈
D(Y, T ). The composition of diagrams (see, [5])

X
p1←−−−− Z1

q1−−−−→ Y
p2←−−−− Z2

q2−−−−→ T ,

is called a diagram (p, q) ∈ D(X,T )

X
p←−−−− Z1 △q1p2 Z2

q−−−−→ T,

where Z1 △q1p2 Z2 = {(z1, z2) ∈ Z1 × Z2 : q1(z1) = p2(z2)},
p = p1 ◦ π1, q = q2 ◦ π2,

Z1
π1←−−−− Z1 △q1p2 Z2

π2−−−−→ Z2,

π1(z1, z2) = z1 (Vietoris map), π2(z1, z2) = z2 for each (z1, z2) ∈ Z.
It shall be written

(p, q) = (p2, q2) ◦ (p1, q1).
From ([5], p. 201, 202) it also results that the composition of the diagrams satisfies the
condition:

(12) for each x ∈ X q(p−1(x)) = q2(p
−1
2 (q1(p

−1
1 (x)))).

Let (p1, q1), (p2, q2) ∈ D(X,Y ). Assume that in the set D(X,Y ) we have an equivalency
relation (it’s denoted as ∼a) such that the following conditions are satisfied (see [14,
13, 8]):

(13) ((p1, q1) ∼a (p2, q2))⇒ (for each x ∈ X q1(p
−1
1 (x)) = q2(p

−1
2 (x))),

(14) ((p1, q1) ∼a (p2, q2))⇒ (q1∗ ◦ p−11∗ = q2∗ ◦ p−12∗ ),

Let (p3, q3), (p4, q4) ∈ D(Y, T ).
(15)
((p1, q1) ∼a (p2, q2) and (p3, q3) ∼a (p4, q4))⇒ (((p3, q3)◦(p1, q1)) ∼a ((p4, q4)◦(p2, q2))).

The setMa(X,Y ) = D(X,Y )/∼a
will be called a set of abstract morphisms (a-morphism).

Let (p, q) ∈ D(X,Y ). For any φa ∈ Ma(X,Y ) the set φ(x) = q(p−1(x)) where
φa = [(p, q)]a is called an image of the point x in the a-morphism φa. We denote
by φ : X →a Y a multivalued map determined by φa ∈ Ma(X,Y ). We observe that
from (12) and (15) it results that if φ : X →a Y is determined by φa = [(p1, q1)]a and
ψ : Y →a T is determined by ψa = [(p2, q2)]a then ψ ◦ φ : X →a T is determined by

(ψ ◦ φ)a = [((p2, q2) ◦ (p1, q1))]a.

We recall that a multivalued map φ : X ( Y is acyclic if for each x ∈ X the set
φ(x) is compact and acyclic. An acyclic map φ : X →a Y because it’s determined by
φa = [(pφ, qφ)]a, where

X
pφ←−−−− Γφ

qφ−−−−→ Y

are maps given by formulas: pφ(x, y) = x, qφ(x, y) = y for each (x, y) ∈ Γφ and Γφ is a
graph of φ.
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Remark 5.1. Let φ : X →a X be a map. We observe that a map φ has a fixed point
i.e., there exists a point x ∈ X such that x ∈ φ(x) if and only if for some (p, q) ∈ φa,
p and q have a coincidence point.

Let TOP denote categories in which Hausdorff topological spaces are objects and con-
tinuous mappings are category mappings. Let TOPa denote categories in which Haus-
dorff topological spaces are objects and multivalued maps determined by abstract mor-
phisms are category mappings. Let VECTG denote categories in which linear graded
vector spaces are objects and linear mappings of degree zero are category mappings.

Theorem 5.2. (see [14]) The mapping H̃∗ : TOPa → VECTG given by the formula

H̃∗(φ) ≡ φ∗ = q∗ ◦ p−1∗ ,

where φ is a multivalued map determined by φa = [(p, q)]a is a covariant functor and
the extension of the functor of the C̆ech homology H∗ : TOP→ VECTG.

Let φ : X →a X be a map. Assume that φ∗ is a Leray endomorphism. Then we define
a Lefschetz number of φ∗ by the formula

Λ(φ∗) = Λ(q∗ ◦ p−1∗ ),

where (p, q) is some diagram in φa (see (14)). We recall that φ : X →a X is a Lefschetz
map if φ∗ is a Leray endomorphism and Λ(φ∗) ̸= 0 implies that the map φ has a fixed
point.

Remark 5.3. A map φ : X ( Y is admissible if and only if there exists a map
∆ : X →a Y such that ∆ ⊂ φ, that is, for each x ∈ X, ∆(x) ⊂ φ(x).

6 The fixed points of compact maps
In this paragraph we will show that the spaces of NESR(V) type have the fixed point
property.

Theorem 6.1. Let X ∈ NESR(V) and let φ : X →a X be a compact map. Then φ is
a Lefschetz map.

Proof. For K = φ(X) there exists a map αK : ZK → K, αK ∈ V(K) such that the
conditions of Definition 4.1 are satisfied. Let h : ZK → T be an embedding and let
S = h(ZK) ⊂ T, where T is some Tychonoff cube. We have the following diagrams:

S
h−1

−−−−→ ZK
αK−−−−→ K

i1−−−−→ X,

X
φ̃−−−−→ K

←−αK−−−−→ ZK
h−−−−→ S,

where i1 is an inclusion, h−1 is an inverse homeomorphism, φ̃(x) = φ(x) for each x ∈ X
and ←−αK(x) = α−1K (x) for each x ∈ K. From the assumption there exists an extension
F : U → X of αK ◦ h−1, where U ⊂ T is some open set such that S ⊂ U . We get the
following commutative diagram:
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X -ψ
U
6
ψ ◦ F

U ,
Z

Z
Z

Z}
F

-X

6
φ

ψ

where ψ = i2 ◦h◦←−αK ◦ φ̃ and i2 : S ↩→ U is an inclusion . There exists a locally convex
space L(T) such that T is a retract of L(T) (see, [4]). Let r : L(T)→ T be a retraction
and let r̃ : r−1(U) → U be a map given by r̃(x) = r(x) for each x ∈ r−1(U). We have
the following commutative diagram:

U -j
r−1(U)
6
j ◦ η

r−1(U),
Z

Z
Z

Z}
η

-U

6
ψ ◦ F

j

where j is an inclusion and η = ψ ◦ F ◦ r̃. From Proposition 2.1 and Theorem 2.4 a
Lefschetz number Λ(φ∗) is well defined and Λ(φ∗) = Λ((j ◦ η)∗). Assume now, that
Λ(φ∗) ̸= 0 then from Theorem 2.4 the map j ◦ η has a fixed point (see, Remark 5.1).
Hence, it results that a map ψ ◦ F has a fixed point. Let x ∈ U be a fixed point of
ψ ◦ F . We have

F (x) ∈ F (h(←−αK(φ̃(F (x))))) = φ̃(F (x)) = φ(F (x)).

Thus, φ is a Lefschetz map and the proof is complete.

7 The fixed points of noncompact maps
We will use the following denotation φn ≡ φ◦φ◦ ...◦φ, (nth iterate of φ), where n ∈ N.

Definition 7.1. A map φ : X →a X is called a compact absorbing contraction (written
φ ∈ CAC(X)) provided there exists an open set U ⊂ X such that:
(7.1.1) φ(U) ⊂ U and the map φU : U →a U , φU (x) = φ(x) for every x ∈ X is
compact,
(7.1.2) for every x ∈ X there exists n = nx such that φn(x) ⊂ U .

Proposition 7.2. (see [5]) Let φ ∈ CAC(X) and U be an open subset X as in Defini-
tion 7.1. If K is a compact subset of X, then there exists n ∈ N such that φn(K) ⊂ U .

Let φ : X ( Y be a map and let A ⊂ X and B ⊂ Y be nonempty sets. Assume that
φ(A) ⊂ B. We denote by φ̂ : (X,A) ( (Y,B) a map of pairs, that is, φ̂(x) = φ(x) for
each x ∈ X.

Proposition 7.3. (see [5]) Let φ̂ : (X,A)→a (X,A) be a map of pairs. If any two of
endomorphisms φ̂∗ : H(X,A) → H(X,A), φ∗ : H(X) → H(X), φA∗ : H(A) → H(A)
are Leray endomorphisms, then so is the third and

Λ(φ̂∗) = Λ(φ∗)− Λ(φA∗).
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Proposition 7.4. Let X ∈ NESR(D). If U ⊂ X is an open set then U ∈ NESR(D).

Proof. Let U ⊂ X be an open set and let K ⊂ U be a compact set. There exists
αK : ZK → K, αK ∈ D(K) such that the conditions of Definition 4.1 are satisfied.
Let Y be a compact space and let f : A → ZK be a continuous map, where A ⊂ Y is
a closed set. From the assumption there exists an extension F1 : V1 → X of αK ◦ f ,
where V1 ⊂ Y is some open neighborhood of A. The set V = F−11 (U) ⊂ Y is an open
neighborhood of A. We define an extension F : V → U of αK ◦ f given by the formula

F (x) = F1(x) for each x ∈ V

and the proof is complete.

Theorem 7.5. Let X be a space and let φ ∈ CAC(X). Assume further that there exists
a space A ⊂ X such that A ∈ NESR(V) and φ(U) ⊂ A, where U is chosen according
to Definition 7.1, then φ is a Lefschetz map.

Proof. Let ψ : U →a U ∩ A be a map given by ψ(x) = φ(x) for all x ∈ U . By the
assumption, a map ψ is well-defined. We observe that (U ∩ A) ∈ NESR(V) (see,
Proposition 7.4). A homomorphism φ̂∗ : H(X,U) → H(X,U) is weakly nilpotent
(see, [12]). Hence and from Proposition 2.2 we get Λ(φ̂∗) = 0. We have a following
commutative diagram:

H(U ∩A) -i∗ H(U)
6φU∗

H(U),
Z

Z
Z

Z}
ψ∗

-H(U ∩A)

6φA∩U∗

i∗

where i : U ∩ A ↩→ U is an inclusion. From the above diagram and Proposition 2.1
it results that φU∗ is a Leray endomorphism and Λ(φU∗) = Λ(φA∩U∗) (see, Theorem
6.1). Hence and from Proposition 7.3 we get that φ∗ is a Leray endomorphism and
Λ(φ∗) = Λ(φU∗). Assume that Λ(φ∗) ̸= 0. Then Λ(φA∩U∗) ̸= 0 and φA∩U has a fixed
point (see, Theorem 6.1). It’s clear that Fix(φA∩U ) ⊂ Fix(φ), so φ is a Lefschetz map
and the proof is complete.

8 Conclusion
In paragraph 3 the notions of a trivial shape in topological spaces are given. In para-
graph 4 the notions of ES and NES are generalized. The Example 4.7 shows that
the class of spaces of NESR(CELL) (ESR(CELL)) type is essentially wider than the
class of spaces of NES (ES) type. We prove that in the class of metrizable spaces
ANRR(D) ⊂ NESR(D) (ARR(D) ⊂ ESR(D)). In paragraphs 6 and 7 we prove that
the spaces of NESR(V) type (in particular NESR(CELL)) have the fixed point prop-
erty (see Theorem 6.1 and Theorem 7.5). It’s worth mentioning that this article is
strongly related to [10, 9, 11].
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