
Abstract. In this paper, closed forms of the summation formulas for generalized Fibonacci numbers are

presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,

Jacobsthal-Lucas numbers.
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1. Introduction

In [3] Horadam de�ned a generalization of Fibonacci sequence as a second-order linear recurrence se-

quence fWn(W0;W1; r; s)g, or simply fWng, as follows:

(1.1) Wn = rWn�1 + sWn�2; W0 = a; W1 = b; (n � 2)

where W0;W1 are arbitrary complex numbers and r; s are complex numbers numbers, see also Horadam [2],

[4] and [5]. Now these generalized Fibonacci numbers fWn(a; b; r; s)g are also called Horadam numbers. The

sequence fWngn�0 can be extended to negative subscripts by de�ning

W�n = �
r

s
W�(n�1) +

1

s
W�(n�2)

for n = 1; 2; 3; ::: when s 6= 0: Therefore, recurrence (1.1) holds for all integer n:

For some speci�c values of a; b; r and s, it is worth presenting these special Horadam numbers in a table

as a speci�c name. In literature, for example, the following names and notations (see Table 1) are used for

the special cases of r; s and initial values.

Table 1. A few special case of generalized Fibonacci sequences.
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Name of sequence Notation: Wn(a; b; r; s) OEIS: [11]

Fibonacci Fn =Wn(0; 1; 1; 1) A000045

Lucas Ln =Wn(2; 1; 1; 1) A000032

Pell Pn =Wn(0; 1; 2; 1) A000129

Pell-Lucas Qn =Wn(2; 2; 2; 1) A002203

Jacobsthal Jn =Wn(0; 1; 1; 2) A001045

Jacobsthal-Lucas jn =Wn(2; 1; 1; 2) A014551
In this work, we investigate some summation formulas of generalized Fibonaci numbers. We present

some works on summing formulas of the numbers in the following Table 2.

Table 2. A few special study of sum formulas.

Name of sequence Papers which deal with summing formulas

Pell and Pell-Lucas [6], [8, 9]

Generalized Fibonacci [7,13,14,12]

Generalized Tribonacci [1,10,15,16]

Generalized Tetranacci [17,18, 22]

Generalized Pentanacci [19,20]

Generalized Hexanacci [21]

2. Summing Formulas of Generalized Fibonacci Numbers with Positive Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with positive

subscripts.

Theorem 2.1. Let x be a complex number. For n � 0 we have the following formulas:

(a): If sx2 + rx� 1 6= 0 then
nX
k=0

xkWk =
xn+2Wn+2 + x

n+1(1� rx)Wn+1 � xW1 + (rx� 1)W0

sx2 + rx� 1 :

(b): If r2x� s2x2 + 2sx� 1 6= 0 then
nX
k=0

xkW2k =
�xn+1 (sx� 1)W2n+2 + rsx

n+2W2n+1 � rxW1 + (r
2x+ sx� 1)W0

r2x� s2x2 + 2sx� 1 :

(c): If r2x� s2x2 + 2sx� 1 6= 0 then
nX
k=0

xkW2k+1 =
rxn+1W2n+2 � sxn+1 (sx� 1)W2n+1 + (sx� 1)W1 � rsxW0

r2x� s2x2 + 2sx� 1 :

Proof.

(a): Using the recurrence relation

Wn = rWn�1 + sWn�2
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i.e.

sWn�2 =Wn � rWn�1

we obtain

sx1W1 = x1W3 � rx1W2

sx2W2 = x2W4 � rx2W3

...

sxn�1Wn�1 = xn�1Wn+1 � rxn�1Wn

sxnWn = xnWn+2 � rxnWn+1:

If we add the equations by side by, we get

nX
k=0

xkWk =
xn+2Wn+2 + x

n+1(1� rx)Wn+1 � xW1 + (rx� 1)W0

sx2 + rx� 1 :

(b) and (c): Using the recurrence relation

Wn = rWn�1 + sWn�2

i.e.

rWn�1 =Wn � sWn�2

we obtain

rx1W3 = x1W4 � sx1W2

rx2W5 = x2W6 � sx2W4

rx3W7 = x3W8 � sx3W6

...

rxn�1W2n�1 = xn�1W2n � sxn�1W2n�2

rxnW2n+1 = xnW2n+2 � sxnW2n:

Now, if we add the above equations by side by, we get

(2.1) r(�W1 +
nX
k=0

xkW2k+1) = (x
nW2n+2 �W2 � x�1W0 +

nX
k=0

xk�1W2k)� s(�W0 +
nX
k=0

xkW2k):

Similarly, using the recurrence relation

Wn = rWn�1 + sWn�2

i.e.

rWn�1 =Wn � sWn�2
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we write the following obvious equations;

rx1W2 = x1W3 � sx1W1

rx2W4 = x2W5 � sx2W3

rx3W6 = x3W7 � sx3W5

...

rxn�1W2n�2 = xn�1W2n�1 � sxn�1W2n�3

rxnW2n = xnW2n+1 � sxnW2n�1

Now, if we add the above equations by side by, we obtain

(2.2) r(�W0 +
nX
k=0

xkW2k) = (�W1 +
nX
k=0

xkW2k+1)� s(�xn+1W2n+1 +
nX
k=0

xk+1W2k+1):

Then, solving the system (2.1)-(2.2), the required result of (b) and (c) follow.

2.1. The Case x = 1. The case x = 1 of Theorem 2.1 is given in [13]. In this subsection, we only

consider the case x = 1; r = 1; s = 2 and we present a theorem which its proof is di¤erent than given in [13]

(in fact the formulas given in the following theorem are in di¤erent forms than given in [13]).

Observe that setting x = 1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem 2.1 (b) and

(c) makes the right hand side of the sum formulas to be an indeterminate form. Application of L�Hospital

rule however provides the evaluation of the sum formulas. If r = 1; s = 2 then we have the following theorem.

Theorem 2.2. If r = 1; s = 2 then for n � 0 we have the following formulas:

(a):
nX
k=0

Wk =
1

2
(Wn+2 �W1):

(b):
nX
k=0

W2k =
1

3
((n+ 3)W2n+2 � 2 (n+ 2)W2n+1 +W1 � 3W0):

(c):
nX
k=0

W2k+1 =
1

3
(� (n+ 1)W2n+2 + 2 (n+ 3)W2n+1 � 2W1 + 2W0):

Proof.

(a): Take x = 1; r = 1; s = 2 in Theorem 2.1 (a).

(b): We use Theorem 2.1 (b). If we set r = 1; s = 2 in Theorem 2.1 (b) then we have

nX
k=0

xkW2k =
�xn+1 (2x� 1)W2n+2 + 2x

n+2W2n+1 � xW1 + (3x� 1)W0

�4x2 + 5x� 1 :

UNDER PEER REVIEW



GENERALIZED FIBONACCI NUMBERS: SUM FORMULAS 5

For x = 1; the right hand side of the above sum formulas is an indeterminate form. Now, we can

use L�Hospital rule. Then we get
nX
k=0

W2k =
d
dx (�x

n+1 (2x� 1)W2n+2 + 2x
n+2W2n+1 � xW1 + (3x� 1)W0)

d
dx (�4x2 + 5x� 1)

�����
x=1

=
1

3
((n+ 3)W2n+2 � 2 (n+ 2)W2n+1 +W1 � 3W0):

(c): We use Theorem 2.1 (c). If we set r = 1; s = 2 in Theorem 2.1 (c) then we have
nX
k=0

xkW2k+1 =
xn+1W2n+2 � 2xn+1 (2x� 1)W2n+1 + (2x� 1)W1 � 2xW0

�4x2 + 5x� 1 :

For x = 1; the right hand side of the above sum formulas is an indeterminate form. Now, we can

use L�Hospital rule. Then we obtain
nX
k=0

W2k+1 =
d
dx (x

n+1W2n+2 � 2xn+1 (2x� 1)W2n+1 + (2x� 1)W1 � 2xW0)
d
dx (�4x2 + 5x� 1)

�����
x=1

=
1

3
(� (n+ 1)W2n+2 + 2 (n+ 3)W2n+1 � 2W1 + 2W0):

Note that di¤erent forms of the sum formulas of the above Theorem (b) and (c) are given in [13].

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 2.3. For n � 0; Jacobsthal numbers have the following property:

(a):
Pn

k=0 Jk =
1
2 (Jn+2 � 1):

(b):
Pn

k=0 J2k =
1
3 ((n+ 3) J2n+2 � 2 (n+ 2) J2n+1 + 1):

(c):
Pn

k=0 J2k+1 =
1
3 (� (n+ 1) J2n+2 + 2 (n+ 3) J2n+1 � 2):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.4. For n � 0; Jacobsthal-Lucas numbers have the following property:

(a):
Pn

k=0 jk =
1
2 (jn+2 � 1):

(b):
Pn

k=0 j2k =
1
3 ((n+ 3) j2n+2 � 2 (n+ 2) j2n+1 � 5):

(c):
Pn

k=0 j2k+1 =
1
3 (� (n+ 1) j2n+2 + 2 (n+ 3) j2n+1 + 2):

2.2. The Case x = �1. We now consider the case x = �1 in Theorem 2.1. The following theorem

presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 2.5. For n � 0 we have the following formulas:

(a): If s� r � 1 6= 0 then
nX
k=0

(�1)kWk =
(�1)nWn+2 + (�1)n+1 (r + 1)Wn+1 +W1 � (r + 1)W0

s� r � 1 :
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(b): If �r2 � s2 � 2s� 1
nX
k=0

(�1)kW2k =
(�1)n+1 (s+ 1)W2n+2 + (�1)n rsW2n+1 + rW1 �

�
r2 + s+ 1

�
W0

�r2 � s2 � 2s� 1 :

(c): If �r2 � s2 � 2s� 1 6= 0 then
nX
k=0

(�1)kW2k+1 =
(�1)n+1 rW2n+2 + (�1)n+1 s (s+ 1)W2n+1 �W1 (s+ 1) + rsW0

�r2 � s2 � 2s� 1 :

Taking r = s = 1 in Theorem 2.5 (a), (b) and (c) we obtain the following proposition.

Proposition 2.6. If r = s = 1 then for n � 0 we have the following formulas:

(a):
Pn

k=0(�1)kWk = (�1)n+1Wn+2 + 2 (�1)nWn+1 + 2W0 �W1:

(b):
Pn

k=0(�1)kW2k =
1
5 (2 (�1)

n
W2n+2 + (�1)n+1W2n+1 �W1 + 3W0):

(c):
Pn

k=0(�1)kW2k+1 =
1
5 ((�1)

n
W2n+2 + 2 (�1)nW2n+1 + 2W1 �W0):

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 2.7. For n � 0; Fibonacci numbers have the following properties:

(a):
Pn

k=0(�1)kFk = (�1)
n+1

Fn+2 + 2 (�1)n Fn+1 � 1:

(b):
Pn

k=0(�1)kF2k = 1
5 (2 (�1)

n
F2n+2 + (�1)n+1 F2n+1 � 1):

(c):
Pn

k=0(�1)kF2k+1 = 1
5 ((�1)

n
F2n+2 + 2 (�1)n F2n+1 + 2):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 2.8. For n � 0; Lucas numbers have the following properties:

(a):
Pn

k=0(�1)kLk = (�1)
n+1

Ln+2 + 2 (�1)n Ln+1 + 3:

(b):
Pn

k=0(�1)kL2k = 1
5 (2 (�1)

n
L2n+2 + (�1)n+1 L2n+1 + 5):

(c):
Pn

k=0(�1)kL2k+1 = 1
5 ((�1)

n
L2n+2 + 2 (�1)n L2n+1):

Taking r = 2; s = 1 in Theorem 2.5 (a), (b) and (c) we obtain the following proposition.

Proposition 2.9. If r = 2; s = 1 then for n � 0 we have the following formulas:

(a):
Pn

k=0(�1)kWk =
1
2 ((�1)

n+1
Wn+2 + 3 (�1)nWn+1 �W1 + 3W0):

(b):
Pn

k=0(�1)kW2k =
1
4 ((�1)

n
W2n+2 + (�1)n+1W2n+1 �W1 + 3W0):

(c):
Pn

k=0(�1)kW2k+1 =
1
4 ((�1)

n
W2n+2 + (�1)nW2n+1 +W1 �W0):

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers

(take Wn = Pn with P0 = 0; P1 = 1).

Corollary 2.10. For n � 0; Pell numbers have the following properties:
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(a):
Pn

k=0(�1)kPk = 1
2 ((�1)

n+1
Pn+2 + 3 (�1)n Pn+1 � 1):

(b):
Pn

k=0(�1)kP2k = 1
4 ((�1)

n
P2n+2 + (�1)n+1 P2n+1 � 1):

(c):
Pn

k=0(�1)kP2k+1 = 1
4 ((�1)

n
P2n+2 + (�1)n P2n+1 + 1):

Taking Wn = Qn with Q0 = 2; Q1 = 2 in the last proposition, we have the following corollary which

presents sum formulas of Pell-Lucas numbers.

Corollary 2.11. For n � 0; Pell-Lucas numbers have the following properties:

(a):
Pn

k=0(�1)kQk = 1
2 ((�1)

n+1
Qn+2 + 3 (�1)nQn+1 + 4):

(b):
Pn

k=0(�1)kQ2k = 1
4 ((�1)

n
Q2n+2 + (�1)n+1Q2n+1 + 4):

(c):
Pn

k=0(�1)kQ2k+1 = 1
4 ((�1)

n
Q2n+2 + (�1)nQ2n+1):

Observe that setting x = �1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem 2.1

(a) makes the right hand side of the sum formula to be an indeterminate form. Application of L�Hospital

rule however provides the evaluation of the sum formula of (a). If r = 1; s = 2 then we have the following

theorem.

Theorem 2.12. If r = 1; s = 2 then for n � 0 we have the following formulas:

(a):
Pn

k=0(�1)kWk =
1
3 ((n+ 2) (�1)

nWn+2 + (2n+ 3) (�1)n+1Wn+1 +W1 �W0):

(b):
Pn

k=0(�1)kW2k =
1
10 (3 (�1)

n
W2n+2 + 2 (�1)n+1W2n+1 �W1 + 4W0):

(c):
Pn

k=0(�1)kW2k+1 =
1
10 ((�1)

n
W2n+2 + 6 (�1)nW2n+1 + 3W1 � 2W0):

Proof.

(a): We use Theorem 2.1 (a). If we set r = 1; s = 2 in Theorem 2.1 (a) then we have
nX
k=0

xkWk =
xn+2Wn+2 � xn+1 (x� 1)Wn+1 � xW1 + (x� 1)W0

2x2 + x� 1 :

For x = �1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.
nX
k=1

(�1)kWk =
d
dx (x

n+2Wn+2 � xn+1 (x� 1)Wn+1 � xW1 + (x� 1)W0)
d
dx (2x

2 + x� 1)

�����
x=�1

=
1

3
((n+ 2) (�1)nWn+2 + (2n+ 3) (�1)n+1Wn+1 +W1 �W0):

(b): Taking x = �1; r = 1; s = 2 in Theorem 2.1 (b) we obtain (b).

(c): Taking x = �1; r = 1; s = 2 in Theorem 2.1 (c) we obtain (c).

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 2.13. For n � 0; Jacobsthal numbers have the following property:

(a):
Pn

k=0(�1)kJk = 1
3 ((n+ 2) (�1)

nJn+2 + (2n+ 3) (�1)n+1Jn+1 + 1):
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(b):
Pn

k=0(�1)kJ2k = 1
10 (3 (�1)

n
J2n+2 + 2 (�1)n+1 J2n+1 � 1):

(c):
Pn

k=0(�1)kJ2k+1 = 1
10 ((�1)

n
J2n+2 + 6 (�1)n J2n+1 + 3):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.14. For n � 0; Jacobsthal-Lucas numbers have the following property:

(a):
Pn

k=0(�1)kjk = 1
3 ((n+ 2) (�1)

njn+2 + (2n+ 3) (�1)n+1jn+1 � 1):

(b):
Pn

k=0(�1)kj2k = 1
10 (3 (�1)

n
j2n+2 + 2 (�1)n+1 j2n+1 + 7):

(c):
Pn

k=0(�1)kj2k+1 = 1
10 ((�1)

n
j2n+2 + 6 (�1)n j2n+1 � 1):

2.3. The Case x = 1+ i. We now consider the complex case x = 1+ i in Theorem 2.1. The following

theorem presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 2.15. For n � 0 we have the following formulas:

(a): If (1 + i) r + 2is� 1 6= 0; then
nX
k=0

(1 + i)kWk =
(1 + i)

n+2
Wn+2 � (1 + i)n+1 ((1 + i) r � 1)Wn+1 � (1 + i)W1 + ((1 + i) r � 1)W0

(1 + i) r + 2is� 1 :

(b): If (1 + i) r2 � 2is2 + (2 + 2i) s� 1 6= 0 then
nX
k=0

(1 + i)kW2k

=
� ((1 + i))n+1 ((1 + i) s� 1)W2n+2 + ((1 + i))

n+2
rsW2n+1 � (1 + i) rW1 +

�
(1 + i) r2 + (1 + i) s� 1

�
W0

(1 + i) r2 � 2is2 + (2 + 2i) s� 1 :

(c): If (1 + i) r2 � 2is2 + (2 + 2i) s� 1 6= 0 then
nX
k=0

(1+i)kW2k+1 =
((1 + i))

n+1
rW2n+2 � ((1 + i))n+1 s ((1 + i) s� 1)W2n+1 + ((1 + i) s� 1)W1 � (1 + i) rsW0

(1 + i) r2 � 2is2 + (2 + 2i) s� 1 :

Taking r = 1; s = 1 in the last theorem we obtain the following proposition.

Proposition 2.16. If r = s = 1 then for n � 0 we have the following formulas:

(a):
Pn

k=0(1 + i)
kWk =

1
3i ((1 + i)

n+2
Wn+2 � i (1 + i)n+1Wn+1 � (1 + i)W1 + iW0):

(b):
Pn

k=0(1 + i)
kW2k =

1
2+i (�i (1 + i)

n+1
W2n+2 + (1 + i)

n+2
W2n+1 � (1 + i)W1 + (1 + 2i)W0):

(c):
Pn

k=0(1 + i)
kW2k+1 =

1
2+i ((1 + i)

n+1
W2n+2 � i (1 + i)n+1W2n+1 + iW1 � (1 + i)W0)

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 2.17. For n � 0; Fibonacci numbers have the following properties.

(a):
Pn

k=0(1 + i)
kFk =

1
3i ((1 + i)

n+2
Fn+2 � i (1 + i)n+1 Fn+1 � 1� i):

(b):
Pn

k=0(1 + i)
kF2k =

1
2+i (�i (1 + i)

n+1
F2n+2 + (1 + i)

n+2
F2n+1 � 1� i):
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(c):
Pn

k=0(1 + i)
kF2k+1 =

1
2+i ((1 + i)

n+1
F2n+2 � i (1 + i)n+1 F2n+1 + i):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 2.18. For n � 0; Lucas numbers have the following properties.

(a):
Pn

k=0(1 + i)
kLk =

1
3i ((1 + i)

n+2
Ln+2 � i (1 + i)n+1 Ln+1 � 1 + i):

(b):
Pn

k=0(1 + i)
kL2k =

1
2+i (�i (1 + i)

n+1
L2n+2 + (1 + i)

n+2
L2n+1 + 1 + 3i):

(c):
Pn

k=0(1 + i)
kL2k+1 =

1
2+i ((1 + i)

n+1
L2n+2 � i (1 + i)n+1 L2n+1 � 2� i):

3. Summing Formulas of Generalized Fibonacci Numbers with Negative Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with negative

subscripts.

Theorem 3.1. Let x be a complex number. For n � 1 we have the following formulas:

(a): If s+ rx� x2 6= 0; then
nX
k=1

xkW�k =
�xn+1 (s+ rx)W�n�1 � sxn+2W�n�2 + xW1 + x (x� r)W0

s+ rx� x2 :

(b): If r2x+ 2sx� s2 � x2 6= 0 then
nX
k=1

xkW�2k =
xn+1 (s� x)W�2n � rsxn+1W�2n�1 + rxW1 + x(x� s� r2)W0

r2x+ 2sx� s2 � x2 :

(c): If r2x+ 2sx� s2 � x2 6= 0 then
nX
k=1

xkW�2k+1 =
�rxn+2W�2n + sx

n+1 (s� x)W�2n�1 + x (x� s)W1 + rsxW0

r2x+ 2sx� s2 � x2 :

Proof. The proof of the theorem can be given as in the proof of Theorem 2.1, so we omit it.

3.1. The Case x = 1. The case x = 1 of Theorem 3.1 is given in [14], see also [13]. In this subsection,

we only consider the case x = 1; r = 1; s = 2 and we present a theorem which its proof is di¤erent than given

in [14] (in fact the formulas given in the following theorem are in di¤erent forms than given in [14]).

Observe that setting x = 1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem (b) and (c)

makes the right hand side of the sum formulas to be an indeterminate form. Application of L�Hospital rule

however provides the evaluation of the sum formulas. If r = 1; s = 2 then we have the following theorem.

Theorem 3.2. If r = 1; s = 2 then for n � 1 we have the following formulas:

(a):
nX
k=1

W�k =
1

2
(�3W�n�1 � 2W�n�2 +W1):
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(b):
nX
k=1

W�2k =
1

3
(nW�2n � 2(n+ 1)W�2n�1 +W1 �W0):

(c):
nX
k=1

W�2k+1 =
1

3
(� (n+ 2)W�2n + 2nW�2n�1 + 2W0):

Proof.

(a): Take x = 1; r = 1; s = 2 in Theorem 3.1 (a).

(b): We use Theorem 3.1 (b). If we set r = 1; s = 2 in Theorem 3.1 (b) then we have
nX
k=1

xkW�k =
� (x� 2)xn+1W�2n � 2xn+1W�2n�1 + xW1 + x (x� 3)W0

�x2 + 5x� 4 :

For x = 1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.
nX
k=0

W2k =
d
dx (� (x� 2)x

n+1W�2n � 2xn+1W�2n�1 + xW1 + x (x� 3)W0)
d
dx (�x2 + 5x� 4)

�����
x=1

=
1

3
(nW�2n � 2(n+ 1)W�2n�1 +W1 �W0):

(c): We use Theorem 3.1 (c). If we set r = 1; s = 2 in Theorem 3.1 (c) then we have
nX
k=1

xkW�2k+1 =
�xn+2W�2n � 2 (x� 2)xn+1W�2n�1 + x (x� 2)W1 + 2xW0

�x2 + 5x� 4 :

For x = 1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.
nX
k=0

W2k+1 =
d
dx (�x

n+2W�2n � 2 (x� 2)xn+1W�2n�1 + x (x� 2)W1 + 2xW0)
d
dx (�x2 + 5x� 4)

�����
x=1

=
1

3
(� (n+ 2)W�2n + 2nW�2n�1 + 2W0):

Note that di¤erent forms of the sum formulas of the above Theorem (b) and (c) are given in [14].

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 3.3. For n � 1; Jacobsthal numbers have the following property:

(a):
Pn

k=1 J�k =
1
2 (�3J�n�1 � 2J�n�2 + 1):

(b):
Pn

k=1 J�2k =
1
3 (nJ�2n � 2(n+ 1)J�2n�1 + 1):

(c):
Pn

k=1 J�2k+1 =
1
3 (� (n+ 2) J�2n + 2nJ�2n�1):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.4. For n � 1; Jacobsthal numbers have the following property:
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(a):
Pn

k=1 j�k =
1
2 (�3j�n�1 � 2j�n�2 + 1):

(b):
Pn

k=1 j�2k =
1
3 (nj�2n � 2(n+ 1)j�2n�1 � 1):

(c):
Pn

k=1 j�2k+1 =
1
3 (� (n+ 2) j�2n + 2nj�2n�1 + 4):

3.2. The Case x = �1. We now consider the case x = �1 in Theorem 3.1. The following theorem

presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 3.5. For n � 1 we have the following formulas:

(a): If r + s� 1 6= 0; then
nX
k=1

(�1)kW�k =
(�1)n+1 (r � s)W�n�1 � (�1)n sW�n�2 �W1 + (r + 1)W0

s� r � 1 :

(b): If �r2 � s2 � 2s� 1 6= 0 then
nX
k=1

(�1)kW�2k =
(�1)n+1 (s+ 1)W�2n + (�1)n rsW�2n�1 � rW1 +

�
r2 + s+ 1

�
W0

�r2 � s2 � 2s� 1 :

(c): If �r2 � s2 � 2s� 1 6= 0 then
nX
k=1

(�1)kW�2k+1 =
(�1)n+1 rW�2n + (�1)n+1 s (s+ 1)W�2n�1 + (s+ 1)W1 � rsW0

�r2 � s2 � 2s� 1 :

Taking r = s = 1 in Theorem 3.5 (a), (b) and (c) we obtain the following proposition.

Proposition 3.6. If r = s = 1 then for n � 1 we have the following formulas:

(a):
Pn

k=1(�1)kW�k = (�1)nW�n�2 +W1 � 2W0:

(b):
Pn

k=1(�1)kW�2k =
1
5 (2 (�1)

n
W�2n � (�1)nW�2n�1 +W1 � 3W0):

(c):
Pn

k=1(�1)kW�2k+1 =
1
5 ((�1)

n
W�2n + 2 (�1)nW�2n�1 � 2W1 +W0):

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 3.7. For n � 1; Fibonacci numbers have the following properties.

(a):
Pn

k=1(�1)kF�k = (�1)
n
F�n�2 + 1:

(b):
Pn

k=1(�1)kF�2k = 1
5 (2 (�1)

n
F�2n � (�1)n F�2n�1 + 1):

(c):
Pn

k=1(�1)kF�2k+1 = 1
5 ((�1)

n
F�2n + 2 (�1)n F�2n�1 � 2):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 3.8. For n � 1; Lucas numbers have the following properties.

(a):
Pn

k=1(�1)kL�k = (�1)
n
L�n�2 � 3:

(b):
Pn

k=1(�1)kL�2k = 1
5 (2 (�1)

n
L�2n � (�1)n L�2n�1 � 5):

(c):
Pn

k=1(�1)kL�2k+1 = 1
5 ((�1)

n
L�2n + 2 (�1)n L�2n�1):
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Taking r = 2; s = 1 in Theorem 3.5 (a), (b) and (c) we obtain the following proposition.

Proposition 3.9. If r = 2; s = 1 then for n � 1 we have the following formulas:

(a):
Pn

k=1(�1)kW�k =
1
2 ((�1)

n
W�n�1 + (�1)nW�n�2 +W1 � 3W0):

(b):
Pn

k=1(�1)kW�2k =
1
4 ((�1)

n
W�2n + (�1)n+1W�2n�1 +W1 � 3W0):

(c):
Pn

k=1(�1)kW�2k+1 =
1
4 ((�1)

n
W�2n + (�1)nW�2n�1 �W1 +W0):

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers

(take Wn = Pn with P0 = 0; P1 = 1).

Corollary 3.10. For n � 1; Pell numbers have the following properties.

(a):
Pn

k=1(�1)kP�k = 1
2 ((�1)

n
P�n�1 + (�1)n P�n�2 + 1):

(b):
Pn

k=1(�1)kP�2k = 1
4 ((�1)

n
P�2n + (�1)n+1 P�2n�1 + 1):

(c):
Pn

k=1(�1)kP�2k+1 = 1
4 ((�1)

n
P�2n + (�1)n P�2n�1 � 1):

Taking Wn = Qn with Q0 = 2; Q1 = 2 in the last proposition, we have the following corollary which

presents sum formulas of Pell-Lucas numbers.

Corollary 3.11. For n � 1; Pell-Lucas numbers have the following properties.

(a):
Pn

k=1(�1)kQ�k = 1
2 ((�1)

n
Q�n�1 + (�1)nQ�n�2 � 4):

(b):
Pn

k=1(�1)kQ�2k = 1
4 ((�1)

n
Q�2n + (�1)n+1Q�2n�1 � 4):

(c):
Pn

k=1(�1)kQ�2k+1 = 1
4 ((�1)

n
Q�2n + (�1)nQ�2n�1):

Observe that setting x = �1; r = 1; s = 2 (i.e. for the generalized Jacobsthal case) in Theorem 3.1

(a) makes the right hand side of the sum formula to be an indeterminate form. Application of L�Hospital

rule however provides the evaluation of the sum formula of (a). If r = 1; s = 2 then we have the following

theorem.

Theorem 3.12. If r = 1; s = 2 then for n � 1 we have the following formulas:

(a):
Pn

k=1(�1)kW�k =
1
3 (n(�1)

n+1W�n�1 + 2 (n+ 2) (�1)nW�n�2 +W1 � 3W0):

(b):
Pn

k=1(�1)kW�2k =
1
10 (3 (�1)

n
W�2n + 2 (�1)n+1W�2n�1 +W1 � 4W0):

(c):
Pn

k=1(�1)kW�2k+1 =
1
10 ((�1)

n
W�2n + 6 (�1)nW�2n�1 � 3W1 + 2W0):

Proof.

(a): We use Theorem 3.1 (a). If we set r = 1; s = 2 in Theorem 3.1 (a) then we have

nX
k=1

xkW�k =
� (x+ 2)xn+1W�n�1 � 2xn+2W�n�2 + xW1 + x (x� 1)W0

�x2 + x+ 2 :
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For x = �1; the right hand side of the above sum formula is an indeterminate form. Now, we can

use L�Hospital rule.

nX
k=1

(�1)kW�k =
d
dx (� (x+ 2)x

n+1W�n�1 � 2xn+2W�n�2 + xW1 + x (x� 1)W0)
d
dx (�x2 + x+ 2)

�����
x=�1

=
1

3
(n(�1)n+1W�n�1 + 2 (n+ 2) (�1)nW�n�2 +W1 � 3W0):

(b): Take x = �1; r = 1; s = 2 in Theorem 3.1 (b).

(c): Take x = �1; r = 1; s = 2 in Theorem 3.1 (c).

From the last theorem, we have the following corollary which gives sum formula of Jacobsthal numbers

(take Wn = Jn with J0 = 0; J1 = 1).

Corollary 3.13. For n � 1; Jacobsthal numbers have the following property:

(a):
Pn

k=1(�1)kJ�k = 1
3 (n(�1)

n+1J�n�1 + 2 (n+ 2) (�1)nJ�n�2 + 1):

(b):
Pn

k=1(�1)kJ�2k = 1
10 (3 (�1)

n
J�2n + 2 (�1)n+1 J�2n�1 + 1):

(c):
Pn

k=1(�1)kJ�2k+1 = 1
10 ((�1)

n
J�2n + 6 (�1)n J�2n�1 � 3):

Taking Wn = jn with j0 = 2; j1 = 1 in the last theorem, we have the following corollary which presents

sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.14. For n � 1; Jacobsthal-Lucas numbers have the following property:

(a):
Pn

k=1(�1)kj�k = 1
3 (n(�1)

n+1j�n�1 + 2 (n+ 2) (�1)nj�n�2 � 5):

(b):
Pn

k=1(�1)kj�2k = 1
10 (3 (�1)

n
j�2n + 2 (�1)n+1 j�2n�1 � 7):

(c):
Pn

k=1(�1)kj�2k+1 = 1
10 ((�1)

n
j�2n + 6 (�1)n j�2n�1 + 1):

3.3. The Case x = 1+ i. We now consider the complex case x = 1+ i in Theorem 3.1. The following

theorem presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 3.15. For n � 1 we have the following formulas:

(a): If (1 + i) r + s� 2i 6= 0; then
nX
k=1

(1+i)kW�k =
� (1 + i)n+1 ((1 + i) r + s)W�n�1 � (1 + i)n+2 sW�n�2 + (1 + i)W1 � (1 + i) (r � 1� i)W0

(1 + i) r + s� 2i :

(b): If (1 + i) r2 � s2 + (2 + 2i) s� 2i 6= 0 then
nX
k=1

(1+i)kW�2k =
(1 + i)

n+1
(s� 1� i)W�2n � (1 + i)n+1 rsW�2n�1 + (1 + i) rW1 � (1 + i)

�
r2 + s� 1� i

�
W0

(1 + i) r2 � s2 + (2 + 2i) s� 2i :

(c): If (1 + i) r2 � s2 + (2 + 2i) s� 2i 6= 0 then
nX
k=1

(1+i)kW�2k+1 =
� (1 + i)n+2 rW�2n + (1 + i)

n+1
s (s� 1� i)W�2n�1 � (1 + i) (s� 1� i)W1 + (1 + i) rsW0

(1 + i) r2 � s2 + (2 + 2i) s� 2i :

Taking r = s = 1 in the last theorem we obtain the following proposition.
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Proposition 3.16. If r = s = 1 then for n � 1 we have the following formulas:

(a):
Pn

k=1(1+i)
kW�k =

1
2�i (� (2 + i) (1 + i)

n+1
W�n�1�(1 + i)n+2W�n�2+(1 + i)W1�(1� i)W0):

(b):
Pn

k=1(1 + i)
kW�2k =

1
2+i (�i (1 + i)

n+1
W�2n � (1 + i)n+1W�2n�1 + (1 + i)W1 � 2W0):

(c):
Pn

k=1(1+ i)
kW�2k+1 =

1
2+i (� (1 + i)

n+2
W�2n� i (1 + i)n+1W�2n�1� (1� i)W1+(1 + i)W0):

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci

numbers (take Wn = Fn with F0 = 0; F1 = 1).

Corollary 3.17. For n � 1; Fibonacci numbers have the following properties.

(a):
Pn

k=1(1 + i)
kF�k =

1
2�i (� (2 + i) (1 + i)

n+1
F�n�1 � (1 + i)n+2 F�n�2 + 1 + i):

(b):
Pn

k=1(1 + i)
kF�2k =

1
2+i (�i (1 + i)

n+1
F�2n � (1 + i)n+1 F�2n�1 + 1 + i):

(c):
Pn

k=1(1 + i)
kF�2k+1 =

1
2+i (� (1 + i)

n+2
F�2n � i (1 + i)n+1 F�2n�1 � 1 + i):

Taking Wn = Ln with L0 = 2; L1 = 1 in the last proposition, we have the following corollary which

presents sum formulas of Lucas numbers.

Corollary 3.18. For n � 1; Lucas numbers have the following properties.

(a):
Pn

k=1(1 + i)
kL�k =

1
2�i (� (2 + i) (1 + i)

n+1
L�n�1 � (1 + i)n+2 L�n�2 � 1 + 3i):

(b):
Pn

k=1(1 + i)
kL�2k =

1
2+i (�i (1 + i)

n+1
L�2n � (1 + i)n+1 L�2n�1 � 3 + i):

(c):
Pn

k=1(1 + i)
kL�2k+1 =

1
2+i (� (1 + i)

n+2
L�2n � i (1 + i)n+1 L�2n�1 + 1 + 3i):
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