
Abstract
In this paper, we study a large deviations principle associated a familly

process Xε perturbated by a rapid process ζ in the Besov-Orlicz space. The
process Xε is a solution of Itô integral :{

dXε
t = b(Xε

t , ζt/ε) dt+
√
ε σ(Xε

t ) dWt

X0 = x ∈ Rd

with the condition ζ is independant of the brownian motion W and obeys
a large deviation principle.
Key words :Large deviations, averaging principle, Besov-Orlicz space
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1 Introduction
In this paper, we consider a family processes Xε d-dimensional solution of

stochastic differential equations :

dXε
t = b(Xε

t , ζt/ε) dt+
√
ε σ(Xε

t ) dWt, X0 = x ∈ Rd (1)

where W is a standard Wiener process independant of ζt/ε. This is to obtain the
asymptotic evaluation of P (Xε

t ∈ A) where A is a Borel set of Besov-Orlicz space
under the assumptions that the process Xε

t converges to the solution X̄t defined
by :

dX̄t = b̄(X̄t) dt, X̄0 = 0,

b̄(x) = lim
T→∞

1
T

∫ T

0
b(xs, ζs/ε) ds

(2)

The asymptotic evaluation obtained will be a result of large deviations from
Xε
t compared to X̄t.
The basic work on the subject is the article by Freidlin [10], see also Ventcel’s

book - Freidlin [9]where he gets this evaluation under the assumption :

lim
T→∞

1
T

logE
(
exp(

∫ T

0

〈
α, b(xs, ζs/ε)

〉
) ds

)
= H0(x, α) (3)

exists uniformly in x and differentiable in α.

The special case ζ ≡ 0 (b(Xε
t , 0) = b(Xε

t )), σ 6≡ Id was studied by Freidlin &
Wentzell [8] see also Varadhan [27], Azencott [1] and Stroock [26] with the usual
topology of uniform convergence, Ben Arous and Ledoux [5] have been developed a
large deviations principle(LDP) in Hölder spaces. Later on, an extension to Besov
spaces was considered in Eddahbi et al [7] and Roynette [4]
The case ζ 6≡ 0 was studied by A. GUILLIN [13] in a situation of moderate devia-
tions.

The aim of this paper is to study the large deviation principle (LDP) of the
law of {Xε

t , ε > 0} in the Besov-Orlicz topology, that is we want to generalize the
result of H. LAPEYRE [17] in the usual uniform topology.

The paper is organized as follows. In section 2, we introduce some hypotheses
and notations. Section 3 contains some preliminaries definitions and results which
are essential for the proof of the theorem. Section 4, under the hypotheses in section
2, we prove in theorem (4.3) the LDP of Xε

t , solution of (1) when ζ satisfy a large
deviations principle.
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2 Hypotheses and Notations

2.1 Hypotheses
In this paper, we assume that the following hypotheses will be verified :

H1. The function σ : Rl×Rd → Rd×Rr is jointly measurable in (x, y) and there
exists a constant C > 0 such that.

|σ(x, y)− σ(x′, y′)| 6 C(|y − y′|+ |x− x′|)
|σ(x, y)| 6 C

H2. The function b : Rl × Rd −→ Rd is jointly measurable in (x, y) and there
exists a constant C > 0 such that.

|b(x, y)− b(x′, y′)| 6 C(|y − y′|+ |x− x′|)
|b(x, y)| 6 C|x− y|

H3. W is a standard Rr-valued Brownian motion
H4. ζt/ε is a process Rl-value independant of brownian motion W and obeys a

large deviation principle with a good rate function I.

2.2 Notations
2.2.1 Cameron-Martin space

Let H(Rd) be the Cameron-Martin space associated with the Brownian motion
on Rd

H(Rd) =

 f : [0, 1]→ Rd, f is absolutely continuous such that
f(0) = 0 et

∫ 1

0
|ḟs|2 ds < +∞


H(Rd) is a Hilbert Space equipped with the norm

〈f, g〉 =
∫ 1

0
|ḟs|2|ġs|2 ds

2.2.2 Besov-Orlicz space

Let BMβ ,wα be denote the Besov-Orlicz space of continuous function f : [0, 1]→
Rd such that ‖ f ‖Mβ ,wα<∞. For all α > 0, Let us put

‖ f ‖Mβ ,wα,=‖ f ‖Mβ
+ sup

0≤t≤1

wMβ
(f, t)

wα,λ(t)
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where wα,λ(t) = tα
(

1 + log 1
t

)λ
,∀α > 0, ‖ f ‖Mβ

= inf
{
τ > 0, 1

τ

[
1+
∫ 1

0
Mβ(τ |f(t)|)dt

]}
et wMβ

(f, t) = sup
0≤h≤t

‖ ∆hf ‖Mβ
with

∆hf(x) = 1[0,1−h](x)(f(x+ h)− f(x)),∀h ∈ [0, 1].

We will use the equivalent of Cieleski, Z. [4]. Let χ1, χj,k, j = 0, 1..., k =
1...2j, suppχj,k = [(k − 1)/2j, k/2j], be the set of Haar functions over the inter-
val [0, 1], and let ϕ0(t) = 1, ϕ1(t) = t, ϕj,k(t) =

∫ t
0 χj,k(s)ds be the set of Schauder

functions. For all continuous functions f : [0, 1] → Rd, soit {An(f), n ≥ 0} its
development in series of Schauder is given by

f(t) = A0(f)ϕ0(t) + A1(f)ϕ1(t) +
2j+1∑

n=2j+1

∑
j,k

An(f)ϕj,k(t)

où A0(f) = f(0), A1(f) = f(1)− f(0) and

An(f) = 2
j
2

[(
f
(2k − 1

2j+1

)
− f

(2k − 2
2j+1

))
−
(
f
( 2k

2j+1

)
− f

(2k − 1
2j+1

))]
sont les coefficients de f dans cette base.

Let B0
Mβ ,wα

be the subspace of BMβ ,wα corresponding to the sequences fj,k such
that

B0
Mβ ,wα

=
{
f ∈ C([0, 1],Rd); ‖ f ‖M2,wα<∞, lim

j∧p→∞
2−j(

1
2−α+ 1

p
)p−γ(1+j)−λ ‖ fj,. ‖p= 0

}
where

‖ fj,. ‖p=
( 2j∑
k=1
|fj,k|p

) 1
p et βγ = 1

B0
Mβ ,wα

is a Banach space.
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3 Preliminaries definitions and results

3.1 Preliminaries definitions
Definition 3.1. A function I : E −→ [0; +∞] is said to be a rate function if it is
lower semicontinuous (lsc).
Furthermore, if for each a < +∞, Γa = {x ∈ E, I(x) ≤ a} is compact, we will say
that I is a good rate function.
Unless explicitly stated otherwise, for any subset A of E and any rate function,
we set I(A) = infx∈A I(x).

Definition 3.2. For some function I, the family of probabilities {P ε}ε>0 satisfy
a large-deviation principle if the following hold :

i) (Lower bound.) For every open subset O of E

lim inf
ε−→0

ε logPε(O) ≥ −I(O)

ii) (Upper bound.) For every closed subset F of E

lim sup
ε−→0

ε logPε(F ) ≤ −I(F ).

3.2 Preliminaries results
Theorem 3.3. Let p0 ≥ 1, f ∈ B0

Mβ ,wα
if and only if

max
(
|f0|, |f1|, sup

p≥p0

sup
j≥0

2−j(
1
2−α+ 1

p
)p−γ(1 + j)−λ ‖ fj,. ‖p

)
<∞ (4)

Theorem 3.4. Let f ∈ B0
Mβ ,wα

if and only if

lim
j∨p→p0

2−j(
1
2−α+ 1

p
)p−γ(1 + j)−λ ‖ fj,. ‖p

)
<∞ (5)

Consider the following norms that are crucial to proving our results :

‖ f ‖∗∗= sup
0≤s<t≤1

|f(t)− f(s)|
w(t− s)

this is dominated by

‖ f ‖∗= max
(
|f(1)|, sup

j≥0
sup

0≤k ≤2j

|fj,k|√
1 + j

)
.

It’s easy to show that there exist D1 > 0 and D2 > 0 such that ‖ f ‖M2,w≤ D1 ‖
f ‖∗∗≤ D2 ‖ f ‖∗.
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Theorem 3.5. Le P ε be the law of
√
εW on B0

M2,wα equipped with the norm
‖‖Mβ ,wα, then P ε satisfy the LDP with the good rate function I define by :

I(f) =


1
2

∫ T

0
|ḟ(s)|2 ds if f ∈ H(Rd)

+∞ other

Theorem 3.6. Let Qε be a family of probability measure on a Polish space E and
satisfying the LDP with a good rate function λ.
Let F : E → E ′ be countinuous. Denote by Qε = P ε ◦ F−1 the family of image
measure of P ε, then {Qε} satisfy the LDP with a good rate function λ̃ define by

λ̃(y) = inf
x:f(x)=y

λ(x).

Lemma 3.7. There exist C = Cl such that for all λ > 0 and µ > 0 where
λ > 4lµ > 0 and λ > 2

√
log 2 , we have

P
[
‖ W ‖∗∗≥ λ, ‖ W ‖≤ µ

]
≤ C max

(
1, l
( λ

4lµ
)2

exp
(
− λ2

C
ln
( λ

4lµ
)))

(6)

Lemma 3.8. There exist C = Cl such that for all u > 2
√

log 2 and for all process
K on [0, 1] , we have

P
[
‖
∫ .

0
Ks dWs ‖∗∗≥ u, ‖ K ‖≤ 1

]
≤ C exp

(
− u2

C

)
. (7)

Lemma 3.9. Let (EX , dX), (EY , dY ), (EZ , dZ), (E, d) denote Polish spaces and
(Ω,F, P ) be a probability space.

Suppose that (Xε, ε > 0) is a family of random variables with values in EX
satisfy a LDP with a good rate function IX , (Y ε, ε > 0) a random variable with
values in EY satisfy a LDP with a good rate function IY .

Suppose that for each ε > 0, Xε is independant of Y ε then the family of random
variable Z = F (Xε, Y ε) where F : EX × EY → EZ is continues, satisfy a LDP
with good rate function IF (z) define by

IF (z) = inf
F (x,y)=z

IX(x) + IY (y).
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4 The main result
Let ϕ ∈ C([0, 1],Rd), and Xε,ϕ solution of SDE

dXε,ϕ
t = b(Xε,ϕ

t , ξt/ε) dt+
√
εσ(Xε,ϕ

t ) dWt. (8)

Let ϕ absolutely continuous, the function Fϕ with values in
(
C([0, 1],Rd)

)2
by

Fϕ(g, f) = h if and only if ht = x+ gt + σ(ϕt)ft +
∫ t

0
fsdσ(ϕs)

is continue.
Xε,ϕ is the family process image of (yε,ϕ,

√
εW ) by Fϕ.

and dyε,ϕt = b(yε,ϕt , ξt/ε) dt , yε,ϕ0 = 0.
Let g, f be given an elements of B0

M2,wα with values in Rd absolutly continuous,
denote by Bx(g, f) the solution of ϕ̇t = ġt + σ(ϕ)ḟt, ϕ0 = x.
Let L0(x, α) the conjugate of the quadratic convex function H0(x, α) obtained
from the formula in (3). L0 is lower semicontinuous(lsc), with values in R+∪{∞},
convex to second argument

For some couple values (ϕ, ψ) in B([0, T ],Rd), denote by :S
0(ϕ, ψ) =

∫ T

0
L0(ϕs, ψ̇s) ds if ψ is absolutly continuous

= +∞ otherS
W (ψ) =

∫ T

0

1
2 | ψ̇s |

2 ds if ψ is absolutly continuous

= +∞ other

Proposition 4.1. Let ϕ ∈ BM2,wα. let yε,ϕ(0) be the solution of dyε,ϕt = b(yε,ϕt , ξt/ε) dt
starting from 0, then S0(ϕ, .) is a rate function for the law of yε,ϕ(0) in B0

M2,Wα
.

Proposition 4.2. The independance of ξ and W , and using lemma 3.9, it is easy
to see that (yε,ϕ(0),

√
εW ) satisfy LDP and Sϕ(g, f) is a rate function in B0

M2,wα

definie by :

Sϕ(g, f) = S0(ϕ, g) + SW (f)
.

By the contraction principle, the law of Xε satisfy LDP on B0
M2,wα with the

rate function defined by :

Sϕ(ω) = inf{Sϕ(g, f), ω = Fϕ(g, f)}.
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Theorem 4.3. Assume H1, H2, H3 et H4 are satisfed, let Pε the law of Xε

solution of (1), Xε is a random variable in B0
M2,wα .

i) For each positive α, Kα = {ϕ ∈ B0
M2,wα/Sϕ(ψ) ≤ α}

ii) For every open subset O of B0
M2,wα,

lim
ε→0

ε logP (Xε(x) ∈ O) ≥ − inf
ϕ∈O

S(ψ)
ϕ .

iii) For every closed F of B0
M2,wα,

lim
ε→0

ε logP (Xε(x) ∈ F ) ≤ − inf
ϕ∈F

S(ψ)
ϕ .

where
Sϕ(ψ) = inf{sϕ(g, f), ψ = Fϕ(g, f)}.

Theorem 4.4. For any r, α, a > 0, for each x with values in Rd, there exist ρ, r̃, ε0
depending only on r, α, a, x such that for g, f absolutly continuous verifing ‖ ḟ ‖≤ a
and ϕ = By(g, f), |x− y| ≤ r̃, ε ≤ ε0 we have,

P
(
‖ Xε(x)− ϕ ‖M2,wα> α, ‖ yε,Φ(0)− g ‖< ρ, ‖

√
εW − f ‖< ρ

)
≤ exp(−r

ε
).

Proof of theorem 4.4. Indeed, let W f = W − 1√
ε
f be a brownian motion

starting from 0. Girsanov’s theorem implies thatW f be the standard k-dimensional
Wiener process with respect to the probability P f given by

dP f

dP
= exp

( 1√
ε

∫ 1

0
ḟs dWs −

1
ε

∫ 1

0
|ḟs|2 ds

)
Let {Y ε

t , 0 ≤ t ≤ 1} the solution of SDE

Y ε
t =

∫ t

0
b(Y ε

s , ζs/ε) ds+
√
ε
∫ t

0
σ(Y ε

s ) dW f
t +

∫ t

0
σ(Xε

s )ḟs ds (9)

To simplify the notation, set for any ρ ,α, ε > 0

U f = {‖ Xε(x)− ϕ ‖M2,wα> α, ‖ yε,Φ(0)− g ‖< ρ, ‖
√
εW − f ‖< ρ}

And

V f = exp
{∣∣∣ 1√

ε

∫ 1

0
ḟs dWs

∣∣∣ > λ√
ε

}
.
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Then
P (U f ) ≤ P

{
U f ∩

(
V f ≤ exp

(
λ
ε

))}
+ P

{
V f > λ

ε

}
≤ exp

(
λ+a/2
ε

)
P f (U f ) + P

(∣∣∣ 1√
ε

∫ 1
0 ḟs dWs

∣∣∣ ≥ λ
ε

) (10)

Where a =‖ h ‖2
H and λ ∈ R

By the classical exponential inequality,

P
(∣∣∣ ∫ 1

0
ḟs dWs

∣∣∣ ≥ λ√
ε

)
≤ 2 exp(− λ2

2aε) ≤ exp(−r
ε

). (11)

Set
Y ε(W f ) = Xε(W f + 1√

ε
f).

Consequently, we obtain that

P f (U f ) = P

(
‖ Y ε(x)− ϕ ‖M2,wα> α, ‖ yε,Φ(0)− g ‖< ρ, ‖

√
εW ‖< ρ

)
,

where Y ε is the solution of SDE in (9), the estimates (10) and (11) complete the
proof of the theorem (4.4).

The remains of proof of theorem 4.4 is an immediate consequence of the next
following propositions.

Proposition 4.5. For all r > 0 and γ > 0 there exist ε0 > 0 and n such that if
0 < ε < ε0, we have :

P f (
{
‖ Xε −Xε,n ‖≥ γ

}
) ≤ exp(−r

ε
)

Proof of Proposition 4.5. For a detailed proof of Proposition 4.5, we refer
to Priouret,P(1982, Lemma 2) [21]

Proposition 4.6. For every γ1 > 0 , ρ > 0 on a :

P f (U f ) ≤ P f (‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗> γ1, ‖

√
εW ε ‖< ρ).

Proof of proposition 4.6.

Y ε
t − ϕ = x− y +

∫ t

0
[b(Y ε

s , ξs/ε) + σ(Y ε
s )ḟs] ds+

√
ε
∫ t

0
σ(Y ε

s ) dW ε
s

−
∫ t

0
[b(ϕs, ξs/ε) + σ(ϕs)ḟs] ds+ yε,ϕt − gt

= x− y +
∫ t

0
[b(Y ε

s , ξs/ε)− b(ϕs, ξs/ε)] ds+
∫ t

0
[σ(Y ε

s ) + σ(ϕs)]ḟs ds

+
√
ε
∫ t

0
σ(Y ε

s ) dW ε
s + yε,ϕt − gt
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Denote by Iεt =
√
ε
∫ t

0
σ(Y ε

s ) dW ε
s , let δ > 0 be such that ‖Iεt ‖ 6 δ, ‖x− y‖ 6 r̃

‖Y ε
t − ϕ‖ 6 r̃ + C

∫ t

0
|Y ε
s − ϕs| ds+ C

∫ t

0
|Y ε
s − ϕs| |ḟs| ds+ ‖Iεt ‖+ ‖yε,ϕt − gt‖

6 r̃ + C
∫ t

0
|Y ε
s − ϕs|(1 + |ḟs|) ds+ ‖Iεt ‖+ ‖yε,ϕt − gt‖

An application of Gronwall’s lemma implies that,

|Y ε
t − ϕt| ≤ (r̃+ ‖ yε,ϕ − g ‖ + ‖

√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖) exp

(
C(
∫ t

0
(1 + |ḟs| ds))

)
.

On one hand

‖ Xε
t − ϕt ‖∗∗ ≤ ‖

√
ε
∫ .

0
σ(Xε

s ) dW ε
s ‖∗∗ + ‖ yε,ϕ − g ‖

+ ‖
∫ t

0
[b(Xε

s , ξs/ε) + σ(Xε
s )fs] ds−

∫ t

0
[b(ϕs, ξs/ε) + σ(ϕs)fs] ds ‖∗∗

≤ ‖
√
ε
∫ .

0
σ(Xε

s ) dW ε
s ‖∗∗ + ‖yε,ϕ − g‖+ ‖

∫ t

0
[b(Xε

s , ξs/ε)− b(ϕs, ζs/ε)] ds‖∗∗

+‖
∫ t

0
[σ(Xε

s )− σ(ϕs)]ḟs ds‖∗∗

≤ ‖Iεt ‖∗∗ + ‖yε,ϕ − g‖+ C
∫ t

0
‖Xε

s − ϕs‖∗∗(1 + |ḟs|) ds

≤ ‖Iεt ‖∗∗ + ‖yε,ϕ − g‖+ sup
0≤u≤v≤1

C

w(u− v)

∫ v

u
(1 + |ḟs|)|Xε

s − ϕs| ds

On the other hand, using the fact that

|Y ε
s − ϕs| ≤ |Y ε

u − ϕu|+ |(Y ε
s − ϕs)− (Y ε

u − ϕu)|

‖Y ε − ϕ‖ ≤ ‖Iεs‖+ ‖yε,ϕ − ϕ‖+ C(1 + |f |)‖Xε − ϕ‖+ C
∫ t

0
(1 + |ḟs|)‖Xε − ϕ‖∗∗ ds

≤ 2δ + C(1 + |f |)‖Xε − ϕ‖+ C
∫ t

0
(1 + |ḟs|) ds

Using now Grownall’s lemma, we obtain

‖Y ε − ϕ‖ ≤ 2δ
[
1 + C(1 + |f |)eC(1+|f |)

]
eC(1+|f |)

Thus :
P f (U f ) ≤ P f (‖

√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗> γ1, ‖

√
εW ε ‖< ρ).

10

UNDER PEER REVIEW



Proposition 4.7. For all r > 0, γ1 > 0, there exist ε > 0 and ρ > 0 such that

P f (‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗> γ1, ‖

√
εW ε ‖< ρ) ≤ exp(−r

ε
).

Proof of proposition 4.7. For α > 0 and for every n ∈ N, we have

A =
{
‖
√
ε
∫ .

0
σ(Y ε

s ) dW ε
s ‖∗∗≥ ρ, ‖

√
εW ‖≤ α

}
⊂ A1 ∪ A2 ∪ A3

where 
A1 =

{
‖
√
ε
∫ .

0
[σ(Y ε

s )− σ(Y ε,n
s )]dW ε

s ‖∗∗≥
ρ

2 , ‖ Y
ε − Y ε,n ‖≤ γ

}
A2 =

{
‖ Y ε − Y ε,n ‖≥ γ

}
A3 =

{
‖
√
ε
∫ .

0
σ(Y ε,n

s ) dWs ‖M2,w≥
ρ

2 , ‖
√
εW ‖≤ α

}
By using Proposition 4.5, we have :

For all r > 0 and γ > 0 there exist ε0 and n such that for every 0 < ε < ε0, we
have :

P f (A2) ≤ exp(−r
ε

)

It’s easy to check that if ‖ Y ε − Y ε,n ‖≤ γ we get ‖
√
ε[σ(Y ε

s ) − σ(Y ε,n
s )] ‖∗∗≤

4εM2γ2.
By using the lemma (3.8),

P f (A1) ≤ C exp
(
− ρ2

Cγ2ε

)
It remains to be increased P f (A3). So we have

‖
√
ε
∫ .

0
σ(Y ε,n

s ) dWs ‖M2,w =
√
ε ‖

n∑
j=0

σ(Y ε,n
tj )[W (tj+1 ∧ .)−W (tj ∧ .)] ‖M2,w

≤
√
ε

n∑
j=0
‖ σ(Y ε,n

tj )[W (tj+1 ∧ .)−W (tj ∧ .)] ‖M2,w

≤ 2
√
εKn ‖ W ‖∗∗ .

By using the lemma (3.7), we have :

P f (A3) ≤ C max
(

1,
( ρ

16lMnα

)2)
exp

(
− ρ2

Cε16M2n2 log
( ρ

16lMnα

))
where C is a constant depending on l et M.
Let r > 0 et ρ > 0, we choose then γ > 0 small enough that ρ

Cγ2 > r, and n such
that

P f (A1) ≤ C exp
(
− r

ε

)
and finally

(
ρ2

16M2n2 log
( ρ

16lMnα

))
> Cr in (12). This ends the proof of the

proposition.
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4.1 Construction of the rate function
For any (x, α) ∈ (Rd)2, denote byH(x, α) = H0(x, α)+1

2 〈α,Σxα〉 the quadratic
function associated of σ(x) where Σx = σ(x)tσ(x).
Let us suppose that L(x, β) the conjugate quadratic function H(x, α) en α. L is
lower semicontinuous with values R+ ∪ {+∞}, converges en β, and verified the
following :
For all ϕ, ψ ∈ B([0, T ],Rd) :

S(ϕ, ψ) =


∫ T

0
L(ϕs, ψs) ds, if ψ is absolutly continuous,

+∞ sinon.

Theorem 4.8. S(ϕ, .) and Sϕ coincident and if S(ϕ, ψ) < +∞, there exist a
couple of functions absolutly continuous (g, f) verifing ψ = Fϕ(g, f) and we have :
S(ϕ, ψ) = S0(ϕ, ψ) + SW (f).

Proof of theorem 4.8. We denote for (x, α) ∈ (Rd)2, H(x, α) = H0(x, α) +
1
2 〈α,Σxα〉. Qx denotes the quadratic form on Rn associated with the matrix σ(x),
defined by Qx(v) = 〈v, σ(x)σ(x)∗v〉 = inf |w|2, σ(x)w = v, v ∈ Rn.
We denote for (x, β) ∈ (Rd)2,

L(x, β) = inf{L0(x, γ) +Q∗(δ); b(γ) + δ = β}

where Q∗ is the quadratic form Qx.
Let τ = Bx(g, f) the solution of τ̇t = b(ġt) + σ(τt)ḟt

S0(ϕ, g) + SW (f) =
∫ T

0
L0(ϕs, ġs) + 1

2 |ḟs|
2 ds

>
∫ T

0
L0(ϕs, ġs) + 1

2 inf{|ġs|2;σ(τs)ġs∇s} ds

>
∫ T

0
L0(ϕs, ġs) + 1

2Q
∗
ϕs(∇s) ds

>
∫ T

0
inf{L0(ϕs, ġs) + 1

2Q
∗
ϕs(∇s); b(ġs) +∇s = τ̇s} ds

>
∫ T

0
L0(ϕs, τ̇s) ds

It follows that,
Sϕ(τs) > S(ϕ, τ).

To check the other inequality, consider Ax[v] defined by

Ax[v] = {w tel que σ(x)w = v, v ∈ Rn}
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Consider the Borel set Γ defined by

Γ = {(x, v) ∈ U ×Rn such that Ax[v] is not empty}

For each (x, v) ∈ Γ, we put

K(x, v) = {w ∈ Rn tel que |w| = inf |u|;u ∈ Ax[v]}

The application K : Γ → {compacts of Rk} is a measurable family of non-empty
compacts in the sense of Rockafeller [25]. Subsequently, there is a Borelian function
χ : Γ→ Rk such that χ(x, v) ∈ K(x, v) for (x, v) ∈ Γ.
For each ϕ, ψ such that S(ϕ, ψ) < +∞ and we put Ω the set of (x, β) such that
L(x, β) < +∞

S(ϕ, ψ) =
∫ T

0
L(ϕs, ψs) ds

As
Qx(v) = 〈v, σ(x)σ(x)∗v〉 = ‖σ∗(x)v‖2

and
Q∗x(v) = inf{|w|2, w ∈ Ax[v]},

we have
Q∗ϕs(ϕ

′
s − b(ϕs)) = |χ(ϕs, ϕ′s − b(ϕs))|2

S(ϕ, ψ) =
∫ T

0
L(ϕs, ψs) ds =

∫ T

0
inf{L0(ϕs, ġs) + 1

2Q
∗
ϕs(∇s); b(ġs) +∇s = τ̇s} ds.

So there exist a functional f ∈ C0(Rk) such that

S(ϕ, ψ) 6
∫ T

0
inf{L0(ϕs, ġs) + 1

2 |ḟ |
2} ds.

It suffices to ask ḟs = |χ(ϕs,∇s)| for almost everything s ∈ [0, T ].

4.2 Regularity of the solution in the Besov-Orlicz space

It is clear that the process
∫ t

0
b(Xε

s , ζs/ε) ds, t ∈ I belongs a.s. to Bϕ,0
M2,w. Then,

it remains to show that the process
∫ t

0
σ(Xε

s ) dWs, t ∈ I satisfies (1.1) and (1.2).
We will prove the result in the case k = d = 1.
Let us put

Yt =
∫ t

0
σ(Xε

s ) dWs

13
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We will show that for some p0, we have for any α < 1
2

sup
j>0

sup
p>p0

2−j/p
p1/2(1 + j)α

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

<∞ p.s. (12)

lim
j∨p→p0

2−j/p
p1/2(1 + j)1/2

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

= 0 (13)

To check relation 12, let λ > 0. Using Chebychev inequality, we get

P
( 2−j/p
p1/2(1 + j)α

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

> α
)

6
λ−p 2−j√
p
2(1 + j)αp

( 2j+1∑
n=2j+1

|An(Y )|p
)

|An(Y )| is dominated by terms of the form

A :=
∣∣∣∣ ∫ t

0
f 2k−1

2j+1 ,
2k

2j+1
(s) dWs

∣∣∣∣ et B :=
∣∣∣∣ ∫ t

0
f 2k−2

2j+1 ,
2k−1
2j+1

(s) dWs

∣∣∣∣,
where

fr,t(s) = 1r<s6tσ(t,Xs) + 1s<r6t[σ(t,Xs)− σ(r,Xs)].

For integers p > 2, using the inequality of Barlow-Yor(1982), for A and B, there
exist a constant Cp appearing in the Burkholder-Davis-Gundy inequality such that

E|An(Y )|p 6 CMppp/2.

Hence,

P
( 2−j/p
p1/2(1 + j)α

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

> α
)

6
λ−p 2−j√
p
2(1 + j)αp

( 2j+1∑
n=2j+1

|An(Y )|p
)

6
(
C

λ

)p 1
(1 + j)αp

Choosing p0 >
1
α

and λ large enough, the series

∑
j>0

∑
p>p0

(
C

λ

)p 1
(1 + j)αp

converges. The point (12) is then a consequence of Borel-Cantelli lemma.
To prove 13, let us remark that as above |An(Y )| is dominated by terms of the
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form A et B the exponential inequalities yields that there exist positive constants
K1 et K2 such that for all λ > 0 large enough,

P
( 1√

1 + j
sup
n
|An(Y )| > α

)
6 K1 exp −λ

2(1 + j)
K2M2 .

Therefore, the Borel-Cantelli lemma leads to

sup
j>1

1√
1 + j

sup
n
|An(Y )| <∞ p.s.

Or

2−j/p
[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

6 sup
n
|An(Y )|

Thus

sup
j>1

2−j/p
p1/2(1 + j)1/2

[ 2j+1∑
n=2j+1

|An(Y )|p
]1/p

6
1
p1/2 sup

j>1
sup
n
|An(Y )|.

and this ends the establishment of (13).
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