
Abstract

Multidimensional scalable test functions are very important in testing the capabilities of new
optimization methods, especially in evaluating their response with the increase of the search
space dimension. As a continuation of a previous published paper, new sets of test functions
for continuous optimization are proposed, both unconstrained (or only box constrained) and
constrained.
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1 Introduction

The real world optimization problems that emerge from various scientific and engineering fields
are characterized by complexity, non-linearity and increased numbers of decision variables and
constraints. In order to be able to handle such difficult problems the researchers in the optimization
field are continually proposing new improved optimization algorithms. Due to the intrinsic mathematical
difficulty of the global optimization problem, in the last decades there is a trend in researching
new nature inspired optimization algorithms, capable to provide acceptable solutions in convenient
computing time, even though the global solution is not guaranteed. Such nature inspired algorithms,
also named meta-heuristic, or population based algorithms, have some advantages over the traditional
gradient based algorithms: they are able to handle more general classes o optimization problems,
are derivative free (can be successfully applied when the derivatives are not available or do not
exist) and can be easily parallelized on modern multiprocessor computers. Before the newly
proposed optimization methods are applied to real world optimization problems, their properties
are extensively evaluated by using known test functions from standard literature. In most of the
cases the global solutions of the test functions are theoretically known, but sometimes only the best
experimentally found solutions are available (for the so called open problems) and any improvement
to the best known solutions provided by the tested optimization algorithm is considered as a
competitive advantage. One important property that modern optimization methods need (especially
in modern Big Data applications) is scalability, i.e. the ability to respond well when the dimension
of the search space increases. In order to appropriately evaluate the scalability property of the
optimization methods there is a need of multidimensional scalable test functions. Many sets of
optimization test functions (benchmarks) are already known from the literature (see [1], [2], [3], [4],
[5], etc.), but there is still a need for multidimensional scalable test functions. The present paper is
a continuation of a previously published paper, [6], both papers having the purpose to supplement
the known collections of optimization test functions with some new proposals of multidimensional
scalable problems, especially deceptive problems (for which the size of the basin of attraction of the
global solution is small compared to the sizes of the basins of attractions of some local solutions),
which can prove useful in further testing and comparing the capabilities of the numerous modern
optimization methods. The indexing of the proposed test functions continues from [6] with f14
for unconstrained optimization test functions and f30 for constrained optimization test functions.
Initially published as a working paper on the Research Gate website, the paper already accumulated
4 citations ([7], [8], [9], [10]) which is a further proof of its usefulness.

The rest of the paper is organized as follows: Section 2 presents the general model of Continuous
Global Optimization Problem (CGOP); Section 3 presents the additional proposed unconstrained
(or box constrained) optimization test functions; Section 4 presents the additional proposed constrained
optimization test functions; and finally, Section 5 summarizes and draws some conclusions.

2 Continuous Global Optimization Problem (CGOP)

The Continuous Global Optimization Problem (CGOP) is generally formulated as ([11]):

minimize f(x) (1)

subject to x ∈ D

with

D = {x : l ≤ x ≤ u; and gi(x) ≤ 0, i = 1, . . . , G;

and hj(x) = 0, j = 1, . . . , H}
(2)
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where x ∈ Rn is a real n-dimensional vector of decision variables (x = (x1, x2, . . . , xn)), f :
Rn → R is the continuous objective function, D ⊂ Rn is the non-empty set of feasible decisions
(a proper subset of Rn), l and u are explicit, finite (component-wise) lower and upper bounds on
x, gi : Rn → R, i = 1, . . . , G is a finite collection of continuous inequality constraint functions,
and hj : Rn → R, j = 1, . . . , H is a finite collection of continuous equality constraint functions.
In the black box approach of the CGOP problem, which is specific for the derivative free meta-
heuristic population based optimization methods, no other additional suppositions are made and
it is assumed that no additional knowledge about the collections of real continuous functions can
be obtained, i.e. for any point x in the boxed domain {x : l ≤ x ≤ u} it is assumed the ability to
calculate the values of the functions f(x), gi(x), i = 1, . . . , G, hj(x), j = 1, . . . , H, but nothing
more. However, in the gradient based optimization methods it is assumed that the methods have
also access to the derivatives of the mentioned set of functions functions (if they exist).

The general mathematical model presented in this section will be applied to the formal presentations
of all the proposed optimization test functions in the next sections of the paper. All the proposed
functions are multidimensional and scalable to the dimension of the search space, n. All other
properties of the functions (such as, unimodality or multimodality) are described when known.
The known global solutions (theoretically provable), or the best known global solutions (for open
problems) are also specified. All the numerical results presented were obtained by applying metaheuristic
optimization methods (see the methods presented in [12], [13] and [14]).

3 Unconstrained optimization test functions

In this section 7 (f14 − f20) additional new test functions are proposed to the set of unconstrained
(or box constrained) optimization test functions.

• f14 (Perturbed Sphere Function) - multimodal, global minimum value (theoretical) f∗14 = −1
at x∗ = (1, 1, . . . , 1). This is another very difficult test function, if approached as a black box
model, due to the small dimension of the attraction basin of the global minimum, which is
contained in a larger attraction basin of the local minima at x∗ = (0, 0, . . . , 0). Usually the
optimization methods are trapped by the local minimum with the larger attraction basin. A
graphical representation of this function is given in Fig. 1 for the 2-dimensional case:

f14(x) = −(n + 1)e

−10
√
n


n∑

j=1

(xj − 1)2


1/2

+

n∑
j=1

x2
j

n ≥ 1, −2 ≤ xj ≤ 2, j = 1, . . . , n

(3)

• f15 - multimodal, global minimum value (theoretical) f∗15 = 0 at x∗ = (1, 1, . . . , 1):

f15(x) =

n∑
j=1

(
2xj−1 − xj −

1

xjxj+1

)2

n ≥ 3, xn+1 = x1, x0 = xn−1, 10−6 ≤ xj ≤ 2, j = 1, . . . , n

(4)

• f16 - multimodal, global minimum value (theoretical) f∗16 = n at x∗ = (2, 2, . . . , 2). The
function has many local minima which have the potential of trapping the optimization
methods, notably the one located close to (3.2, 3.2, . . . , 3.2):
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Figure 1: Difficult optimization problem (2-dimensional case)

f16(x) =

n∑
j=1

logxj
(|xj−1xj+1 − 5.2xj + 6.4|+ xj)

n ≥ 3, xn+1 = x1, x0 = xn−1, 1.000001 ≤ xj ≤ 3.3, j = 1, . . . , n

(5)

• f17 - unimodal, global maximum value (theoretical) f∗17 = 4 at x∗ = (2, 2, . . . , 2):

f17(x) = min{3x1 + x2 − x2
3, 3x2 + x3 − x2

4, . . . , 3xn + x1 − x2
2}

n ≥ 3, 0 ≤ xj ≤ 4, j = 1, . . . , n
(6)

• f18 - unimodal, global maximum value (theoretical) f∗18 = 1 at x∗ = (1, 1, . . . , 1):

f18(x) = min{3x1x2 − 2x3
3, 3x2x3 − 2x3

4, . . . , 3xnx1 − 2x3
2}

n ≥ 3, 0 ≤ xj ≤ 2, j = 1, . . . , n
(7)

• f19 - Not Quasi-Convex Function, unimodal, global maximum value (theoretical) f∗20 = 0 at
x∗ = (0, 0, . . . , 0):
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Figure 2: Example of non-quasi-convex unimodal function ([15]

f19(x) =

n∑
j=1

x4
j + 16

n∑
j=1

x2
jx

2
j+1,

−2 ≤ xj ≤ 2, j = 1, . . . , n, xn+1 = x1,

(8)

This is an example of unimodal function that is not quasi-convex ([15]), the 2-dimensional
case being presented in Fig. 2.

• f20 - Plateau Function, unimodal, global minimum value (theoretical) f∗20 = −1 at x∗ =
(1, 1, . . . , 1):

f20(x) = −(n + 1)e

−10
√

n


n∑

j=1

(xj − 1)2


1/2

+ max{
n∑

j=1

x2
j , n +

0.01

n
− 0.2}

− 2 ≤ xj ≤ 2, j = 1, . . . , n,

(9)

This is an example of a difficult unimodal function having an almost flat region with a very
narrow escape path to the minimum point ([15]). The 2-dimensional case is presented in Fig.
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Figure 3: Example of quasi-convex unimodal function with almost flat region ([15]

3.

4 Constrained optimization test functions

In this section 10 (f30 − f39) additional new test functions are proposed to the set of constrained
optimization test functions.

• f30 - unimodal, global maximum value (theoretical) f∗30 = n(n+1)
2

at
x∗ =

(
n+1
2

, n+1
2

, . . . , n+1
2

)
:

f30(x) =

n∑
j=1

xj ,

g1(x) = −n +

n∑
j=1

j

xj
≤ 0,

g2(x) = −n +
n∑

j=1

n− j + 1

xj
≤ 0,

n ≥ 2, 0.5 ≤ xj ≤ n + 1, j = 1, . . . , n

(10)

• f31 - unimodal, global minimum value (theoretical) f∗31 = 0 at
x∗ = (1, 1, . . . , 1):
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f31(x) =

n∑
j=1

x2
j

2xj−1xj+1 + 1
−

n∑
j=1

xj

xj−1 + xjxj+1 + 1
,

g(x) = 1−
n∏

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, x0 = xn−1, 0 ≤ xj ≤ 2, j = 1, . . . , n

(11)

• f32 - unimodal, global minimum value (theoretical) f∗32 = 1 at

x∗ =
(

1
n−1

, 1
n−1

, . . . , 1
n−1

)
:

f32(x) =

n∑
j=1

1

1 + (n− 1)2xj
,

g(x) = (n− 1)−
n∑

j=1

1

1 + xj
≤ 0,

n ≥ 2, 0 ≤ xj ≤ 1, j = 1, . . . , n

(12)

• f33 - unimodal, global maximum value (theoretical) f∗33 = 3 at
x∗ =

(
1
n
, 1
n
, . . . , 1

n

)
:

f33(x) =

n∑
j=1

(3xj−1xj + 4xjxj + 2xjxj+1)2,

g(x) = −1 +

n∑
j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, x0 = xn−1, 0 ≤ xj ≤ 1, j = 1, . . . , n

(13)

• f34 - unimodal, global minimum value (theoretical) f∗34 = (n− 1)n at

x∗ =
(

1
n−1

, 1
n−1

, . . . , 1
n−1

)
:

f34(x) =

n∏
j=1

(
1

xj
− 1

)
,

g(x) = −1 +

n∑
j=1

xj ≤ 0,

n ≥ 2, 10−6 ≤ xj ≤ 1, j = 1, . . . , n

(14)

• f35 - unimodal, global maximum value (theoretical) f∗35 = 1 at
x∗ = (1, 1, . . . , 1):
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f35(x) =

n∑
j=1

1(
1− x2

j +

n∑
j1=1

x2
j1

) ,

g(x) = n−

(
n∏

j=1

xj

)(
n∑

j=1

xj

)
≤ 0,

n ≥ 2, 0 ≤ xj ≤ 2, j = 1, . . . , n

(15)

• f36 - unimodal, global maximum value (theoretical) f∗36 =

n∑
j=1

1

j
at

x∗ = (1, 21/2, 31/3, . . . , n1/n):

f36(x) =

n∑
j=1

1

xj
j

,

g(x) =

n∏
j=1

xj −
n∏

j=1

j
1
j ≤ 0,

n ≥ 2, 10−6 ≤ xj ≤ 2, j = 1, . . . , n

(16)

• f37 - unimodal, global minimum value (theoretical) f∗37 = 0 at
x∗ = (0, 0, . . . , 0):

f37(x) =

n∑
j=1

|xj |3 −
n∏

j=1

xj ,

g(x) =

n∏
j=1

xj −
n∑

j=1

xj ≤ 0,

n ≥ 2, − 10 ≤ xj ≤ 10, j = 1, . . . , n

(17)

• f38 - unimodal, global minimum value (theoretical) f∗38 = 1 at
x∗ = (1, 1, . . . , 1):

f38(x) =

n∑
j=1

xj(
1− xj +

n∑
j1=1

xj1

) ,

g(x) = −1 +

n∑
j=1

1(
1− xj +

n∑
j1=1

xj1

) ≤ 0,

n ≥ 2, 0 ≤ xj ≤ 2, j = 1, . . . , n

(18)
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• f39 - unimodal, global maximum value (theoretical) f∗39 = n + 1 at
x∗ = (1, 1, . . . , 1):

f39(x) =

n∑
j=1

xj +
1

n

(
n∑

j1=1

x2
j

)
,

g(x) = −(n + 1) +

n∑
j=1

x2
j +

n∏
j=1

xj ≤ 0,

n ≥ 2, 0 ≤ xj ≤ 2, j = 1, . . . , n

(19)

5 CONCLUSIONS

The paper proposed two new sets of optimization test functions: a set of 7 continuous unconstrained
(or box constrained) test functions, and a set of 10 continuous constrained test functions. All the
proposed functions are multidimensional and scalable to the dimension of the search space, n,
which is a useful property when the response in performance (efficiency and success rate) of an
optimization method is investigated with the increase of the dimension of the search space. It is
the hope of the author that the proposed new sets of optimization test functions will represent a
valuable addition to the known collections of optimization test functions and will prove useful in
investigating the properties of new or existing optimization methods.
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