
Abstract

This paper is concerned with oscillation criteria for a class of third-order differential

equations with neutral term by using some necessary analysis techniques, some sufficient

conditions for oscillation are obtained, some examples are provided to illustrate the main

results.
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1 Introduction

In this paper, we consider the oscillatory and asymptotic properties for a class of third-

order nonlinear differential equation with damped term(
1

p(t)

(
1

r(t)
[x(t) + a(t)x(µ(t))]′

)′)′
+ q(t)f(x(δ(t))) = 0, t ≥ t0 (E)

As usual, we use the notation, u(t) = x(t) + a(t)x(µ(t)). In what follows, it is always

assume

(C1) p(t), r(t), a(t), q(t), δ(t), µ(t) ∈ C ([t0,∞), (0,∞)),

(C2)
∫∞
t0
p(t)dt =

∫∞
t0
r(t)dt =∞, r′(t) > 0,

(C3) µ(t) ≤ t, limt→∞ µ(t) = limt→∞ δ(t) =∞,

(C4) 0 ≤ a(t) ≤ a0 < 1, f ∈ C(R,R), f ′(v) > 0, f(v)
v ≥ λ, for all v 6= 0, and for some

λ > 0.
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By a solution of equation (E) we mean a continuous function x(t) definned on an

interval [t0,∞) such that
(

1
r(t) [x(t) + a(t)x(µ(t))]′

)′
is continuously differentiable satifies

(E), we assum that equation (E) have such solution. A solution of (E) is called oscillatory

if it has arbitrarily large zeros on [t0,∞), otherwise, it is called nonoscillatory. We say

equation (E) is oscillatory if all its continuable solutions are oscillatory.

In what follows, we consider only proper solution of the equation (E) which are defined

for all large t. More and more people are interested in oscillatory and nonoscillatory criteria

to be shown[1−7]. Our principal goal in this paper is to derive new oscillation criteria for

equation (E), without requiring restrictive condition (4) and (7) in [1]

For simplicity, we introduce the following nonation:

u[0](t) = u(t), u[1](t) =
1

r(t)
u′(t), u[2](t) =

1

p(t)
(u[1](t))′

lemma 1. Let x(t) be a nonscillatory solutionof (E), then there exists a Tx for t >

Tx ≥ t0, such that u(t) has only the following two cases.

(i) u(t)u[1](t) < 0, u(t)u[2](t) > 0,

(ii) u(t)u[1](t) > 0, u(t)u[2](t) > 0 .

Proof. Without loss of generality we may assume that x(t) is eventually positive, i.e.

there exists Tx ≥ t0 such that x(t) > 0, u(t) > 0 for t ≥ Tx. (If it is an eventually negative

,the proof is similar). Using (E) we get (u[2](t))′ < 0, eventually. Then u[2](t) is decreasing

and of one sign for t ≥ Tx. If we admit u[2](t) < 0, then there exists aconstant M > 0

such that
1

p(t)
u[1](t))′ ≤ −M < 0,

(u[1](t))′ ≤ −Mp(t)

Integrating from Tx to t, we obtain

u[1](t) ≤ u[1](Tx)−M
∫ t

Tx

p(s)ds

Leting t → ∞ and using (C2), we get u[1](t) < 0, which together with r′(t) > 0 and

u[2](t) = r(t)u′′(t)−r′(t)u′(t)
p(t)r2(t)

< 0.

We get u′′(t) < 0, from u[1](t) = 1
r(t)u

′(t) < 0, we obtain u′(t) < 0, this implies

u(t) < 0. This constradiction shows that u[2](t) > 0, thus either u[1](t) < 0 or u[1](t) > 0

holds, eventually. The proof is completed.

lemma 2. Assume that x is a solution of (E), u(t) has the proper (ii), then

(1− a0)|u(t)| ≤ |x(t)| ≤ |u(t)|, (1.1)
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for t ≥ T and

lim
t→∞
|u(t)| = lim

t→∞
|x(t)| =∞ (1.2)

The proof of this Lemma is similar to Lemma 1 of refference of [1], and hence is

ommitted.

2 Oscillation theorems

Theorem 1. Assume that∫ ∞
t1

r(w)

∫ ∞
w

p(v)

∫ ∞
v

q(s)dsdvdw =∞ (2.1)

Moreover, assume that δ(t) < t and there exists function g(t) such that

g(t) ∈ C ([t0,∞) , R), g(t) > t, δ (g(t)) ≤ t,

and

limt→∞

∫ g(t)

t
q(s)

∫ δ(s)

t0

r(v)

∫ v

t0

p(w)dwdvds =∞ (2.2)

Then any proper solution x of (E) is either oscillatory or satisfies limt→∞x(t) = 0.

Proof. Without loss of generality we may assume that x is an eventually positive

solution, we first assume that u(t) has the proper (i). Then there exists Tx ≥ t0 such that

u(t) > 0, u[1](t) < 0, u[2](t) > 0 for t ≥ Tx, we claim that

limt→∞u
[i] = li = 0, i = 0, 1, 2.

Indeed, if l1 < 0, then u′(t) ≤ l1r(t) for large t,

u(t) ≤ u(Tx) + l1

∫ t

Tx

r(t)dt

Letting t→∞, we get a contradiction with the u(t) > 0. Therefore l1 = 0. If l2 > 0, then

(u[1](t))′ ≥ l2p(t) for large t

u[1](t) ≥ u(t0) + l2

∫ t

t0

p(t)dt

Letting t→∞, we get a contradiction with the u[1](t) < 0. Therefore l2 = 0. Assume by

contradiction that l0 > 0, then for any ε > 0 we have l0 + ε > u(µ(t)) > l0 for large t and

choose 0 < ε < l0(1−a0)
a0

.

x(t) = u(t)− a(t)x(µ(t)) > l0 − a0u(µ(t)) > l0 − a0(l0 + ε) = k(l0 + ε) > kl0 (2.3)
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Where k = l0−a0(l+ε)
l0+ε

> 0. In view of the fact f(v) is increasing, there exists B > 0 such

that f(x(δ(t))) ≥ B for large t, hence frome equation (E) it follows that (u[2](t))′ ≤ −q(t)B.

Integrating this inequality two times from t to ∞ we obtain

−u[1](t) ≥ B
∫ ∞
t

p(v)

∫ ∞
v

q(s)dsdv

Integrating from t1 to t we obtain

−u(t) + u(t1) ≥ B
∫ t

t1

r(w)

∫ ∞
w

p(v)

∫ ∞
v

q(s)dsdvdw

Letting t→∞ we obtain∫ ∞
t1

r(w)

∫ ∞
w

p(v)

∫ ∞
v

q(s)dsdvdw <∞

We get the contradiction with condition (2.1). Therefore l0 = 0 and the inequality 0 ≤
x(t) ≤ u(t) implies that limt→∞x(t) = 0.

Assume that u(t) has the proper (ii). Then there exists t1 ≥ t0 such that u(t) > 0,

u[1](t) > 0 and u[2](t) > 0 for t ≥ t1, let t2 be such that δ(t) ≥ t1 for t ≥ t2. Be-

cause (u[2](t)′ = −q(t)f(x(δ(t))) < 0 for t ≥ t2, u
[2](t) is a positive decreasing function.

Integrating the equation (E) from t to ∞ we obtain

u[2](t) = u[2](∞) +

∫ ∞
t

q(s)f(x(δ(s))ds

u[2](t) ≥
∫ ∞
t

q(s)f(x(δ(s)))ds ≥ λ
∫ ∞
t

q(s)x(δ(s))ds

Using the (1.1) we obtain

u[2](t) ≥ λ(1− a0)
∫ ∞
t

q(s)u(δ(s))ds ≥ λ(1− a0)
∫ g(t)

t
q(s)u(δ(s)))ds (2.4)

Integrating u[2](t) = u[2](t) twice from t1 to t we obtain

u(t) ≥
∫ t

t1

r(s)

∫ s

t1

p(v)u[2](v)dvds

for t ≥ t1, we have

u(δ(t)) ≥
∫ δ(t)

t1

r(s)

∫ s

t1

p(v)u[2](v)dvds

Substituting into (2.4) we get

u[2](t) ≥ λ(1− a0)
∫ g(t)

t
q(s)

∫ δ(s)

t1

r(v)

∫ v

t1

p(w)u[2](w)dwdvds
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Considering the fact that u[2](t) is decreasing and u[2](δ(g(t))) is nonincreasing, we get

u[2](t) ≥ λ(1− a0)u[2](δ(g(t)))

∫ g(t)

t
q(s)

∫ δ(s)

t1

r(v)

∫ v

t1

p(w)dwdvds

Since u[2](t) is decreasing. Lemma 1 holds, we have

1 ≥ u[2](t)

u[2](δ(g(t)))
≥ λ(1− a0)

∫ g(t)

t
q(s)

∫ δ(s)

t1

r(v)

∫ v

t1

p(w)dwdvds

Which is contradiction of condition (2.2). The proof is completed.

Theorem 2. Assume that (2.1) and

∫ ∞
t0

q(t)

∫ δ(t)

t0

r(s)dsdt =∞ (2.5)

Then any proper solution x of (E) is either oscillatory or satisfies limt→∞x(t) = 0.

Proof. By the first part of the proof of Throrem 1 any solution x tends to zero that

if u(t) = x(t) + a(t)x(µ(t)) has the proper (i).

Without loss of generality we may assume that x is an eventually positive solution,

assume that u(t) has the proper (ii). Then there exists T ≥ t0 such that u(t) > 0,

u[1](t) > 0, u[2](t) > 0 for t ≥ T . Since u[1](t) is an eventually positive increasing function,

we have u[1](t) > u[1](T ) and by integrating from T to t we get

u(t) > u[1](T )

∫ t

T
r(s)ds = L

∫ t

T
r(s)ds (2.6)

Using (1.1) together with (2.6) we get

x(δ(t)) ≥ u(δ(t))(1− a0) ≥ (1− a0)L
∫ δ(t)

T
r(s)ds (2.7)

Let T1 > T be such that δ(t) ≥ T1. Integrating the equation (E) from T1 to ∞ we

obtain

u[2](T1)− u[2](∞) =

∫ ∞
T1

q(s)f(x(δ(s)))ds

Therefore
∫∞
T1
q(s)f(x(δ(s)))ds <∞. Since (C4) holds, we have

λ

∫ ∞
T1

q(s)x(δ(s))ds ≤
∫ ∞
T1

q(s)f(x(δ(s)))ds

i.e.

λ

∫ ∞
T1

q(s)x(δ(s))ds <∞
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and using (2.7) we get

λ(1− a0)L
∫ ∞
T1

q(t)

∫ δ(t)

T
r(s)dsdt <∞

Which contradicts (2.5). This completes the proof.

Theorem 3. Assume that δ(t) ≤ t, f(uv) ≥ f(u)f(v) for u, v ∈ R, (2.1) and∫ 1

0

1

f(v)
dv <∞

If ∫ ∞
t0

q(t)

∫ δ(t)

t0

r(s)

∫ s

t0

p(v)dvdsdt =∞ (2.8)

Then any proper solution x of (E) is either oscillatory or satisfies limt→∞x(t) = 0.

Proof. By the first part of the proof of Throrem 1 any solution x tends to zero that

if u(t) = x(t) + a(t)x(µ(t)) has the proper (i).

Without loss of generality we may assume that x is an eventually positive solution,

assume that u(t) has the proper (ii). Then there exists T ≥ t0 such that u(t) > 0,

u[1](t) > 0, u[2](t) > 0 for all t ≥ T . Because of u[2] is decreasing, we get

u[1](t) = u[1](t1) +

∫ t

t1

p(s)u[2](s)ds ≥ u[2](t)
∫ t

t1

p(s)ds

and therefore

u′(t) ≥ u[2](t)r(t)
∫ t

t1

p(s)ds

u(t) ≥ u(t)− u(t1) =

∫ t

t1

u′(s)ds ≥ u[2](t)
∫ t

t1

r(s)

∫ s

t1

p(v)dvds (2.9)

Using (E) and (1.1) we get

−(u[2](t))′ = q(t)f(x(δ(t))) ≥ q(t)f(1− a0)f(u(δ(t)))

Using (C4) and ((2.9) we get

−(u[2](t))′ ≥ λq(t)f(1− a0)f(u[2](t))

∫ δ(t)

t1

r(s)

∫ s

t1

p(v)dvds

Hence

−
∫ t

t1

u[2](t))′

f(u[2](t))
dt ≥ λf(1− a0)

∫ t

t1

q(w)

∫ δ(w)

t1

r(s)

∫ s

t1

p(v)dvdsdw

Letting t→∞

−
∫ ∞
t1

u[2](t))′

f(u[2](t))
dt =

∫ u[2](t1)

u[2](∞)

ds

f(s)
<∞

We get the contradiction with condition (2.8). The proof is completed.
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3 Examples

Example 1. Consider the equation(
1

t
[x(t) +

1

3t
x(
t

2
)]′
)′′

+
1

t3
x(k2t) = 0, t ≥ 1 (3.1)

where 0 < k < 1. If we take g(t) = t
k . One can check that condition (2.1) and (2.2) are

satisfied. Thus, by Theorem 1, then any proper solution x of (3.1) is either oscillatory or

satisfies limt→∞x(t) = 0.

Example 2. Consider the equation(
1

t
[x(t) +

1

5t
x(
t

2
)]′
)′′

+
1

t3
x(
t

3
) = 0, t ≥ 1 (3.2)

One can check that condition (2.1) and (2.5) are satisfied. Thus, by Theorem 2, then any

proper solution x of (3.2) is either oscillatory or satisfies limt→∞x(t) = 0.
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