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Abstract

The Earth is exposed annually to the fall of some meteorites and probably other

celestial bodies. This event causes a potential danger to vital areas in several coun-

tries. Consequently, the accurate calculation of the falling times of such bodies is,

in general, useful to take the necessary procedures to protect these areas in view of

the calculated falling time. Several centuries ago, the British scientist Isaac Newton

developed the laws of regular motion with a constant acceleration in a straight line.

Such laws are often studied in the early years of the university stage to investigate

the vertical motion of objects close enough to the surface of the earth, that is, at

small heights compared to the radius of the Earth. Newton also discovered his im-

portant law of general gravitation in classical mechanics, which is usually used to

analyze the motion of an object in the gravitational field of another object. The

latter is of course more general than the aforementioned vertical motion laws. The

question that we want to answer in the present study is that; what is the differ-

ence between the falling time of an object in view of both Newton’s laws of vertical

motion and Newton’s law of general gravitation? In the present study, we will de-

termine the amount of error resulting from the applications of Newton’s laws of

vertical motion. Such an error will be expressed in terms of the height from which

an object fall. The results are applied on several bodies in real life and the obtained

errors are tabulated.
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1 Introduction

Perhaps the first attempt to study the falling objects in the Earth’s gravitational field was

the experiment of the pound and the quill made by the great scientist Isaac Newton several

centuries ago. Newton concluded from his experiment that the falling time of two bodies

from the same height does not depend on their masses and that they will take the same

time to reach the ground in the absence of air resistance, where Newton has conducted

his famous experiment in a vacuum tube of air. Newton made great contributions and

discovered many scientific laws in classical mechanics [1], not only, he also developed

other important theories and laws in various branches of physics and astronomy. Some of

the most famous laws developed by Newton were the three laws of motion in a straight

line with a constant/regular acceleration. These laws are usually taught in the early

years for the students in physics and mathematics departments. Replacing the constant

acceleration by the acceleration due to the gravity of Earth leads to Newton’s laws of

vertical motion which are used to study the vertical motion of objects near to the Earth’s

surface.

The question arises here is that; is it possible to apply Newton’s laws of vertical

motion on objects falling from hundreds of kilometers above the ground? On the other

hand, Newton derived his famous law of gravitation through which can be used to study

the vertical motion of objects far away from the Earth’s surface [2]. Hence, Newton’s law

of gravitation could be applied in a much greater range than Newton’s laws of vertical

motion. The questions that we try to answer in the current study are; what is the

difference between the results that can be obtained in light of both Newton’s laws of

vertical motion and Newton’s law of gravitation? Is the falling time derived from both

types of laws will be the same when an object falls from a prescribed height above the

ground? In the present research, we will be able to determine the amount of error resulting

from the applications of Newton’s laws of vertical motion in estimating the falling time

of objects as a function of the height. The equation of motion of a particle in a general

resistant medium in view of Newton’s law of gravitation is given by [2]

r̈(t) = −GM
r2

+ kvn, (1)

where, M is the mass of Earth, G is Newton’s constant of general gravitation, r is the

distance of the particle from the center of Earth, v(t) = ṙ(t) is the vertical instantaneous

velocity of the particle, k is the constant of resistance, and n is a positive natural number.

Assuming that R is the radius of Earth, the initial conditions (ICs) are given as

ṙ(0) = 0, r(0) = h+R (2)
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where h is the height of the particle above the Earth’s surface at initial time. The proposed

method depends basically on applying some basic concepts in calculus [3,4] for the special

case k = 0. In case k 6= 0, n ≥ 1, the Adomian decomposition method (ADM) [5-14]

may be applied to solve the nonlinear system (1-2) which is a complex nonlinear initial

value problem. The objectives of this paper are focused on estimating the falling time

and comparing our results with the corresponding ones obtained from Newton’s laws of

vertical motion. Then, applying the results on several bodies in our real life.

2 The exact solution

In this section, the exact solution of the system (1-2) will be obtained at the special case

k = 0. In this case, Eq. (1) becomes

r̈(t) = −GM
r2

. (3)

Multiplying both sides by ṙ, we have

ṙr̈(t) = −GMr−2ṙ. (4)

Integrating once, yields
1

2
(ṙ(t))2 =

GM

r
+ c1, (5)

where c1 is a constant of integration. Applying the ICs (2), we obtain

c1 = − GM

h+R
, (6)

and Eq. (5) becomes

(ṙ(t))2 = 2GM

(
1

r
− 1

h+R

)
, (7)

or

ṙ(t) = ±

√
2GM

(
1

r
− 1

h+R

)
(8)

Since r(t) is a decreasing function in time, we choose the negative sign in (8) and this

yields

dr

dt
= −

√
2GM

(
1

r
− 1

h+R

)
. (9)

Making use of the new variable u = 1
r
, we have

dr

dt
= − 1

u2
du

dt
. (10)
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Inserting (10) into (9) gives

− 1

u2
du

dt
= −

√
2GM (u− α), (11)

where

α =
1

h+R
. (12)

Using separation of variables approach, we can write (11) as

du

u2
√
u− α

=
√

2GM dt. (13)

Integrating once again, yields∫
du

u2
√
u− α

=
√

2GM t+ c2, (14)

where c2 is also a constant of integration. Implementing the trigonometric substitution

method, we have

u = α (secφ)2 , du = 2α (secφ)2 tanφdφ. (15)

Substituting (15) into (14) and simplifying leads to

2√
α3

∫
(cosφ)2dφ =

√
2GM t+ c2, (16)

i.e.,
1√
α3

(φ+ sinφ cosφ) =
√

2GM t+ c2. (17)

From (15), we have

φ = sec−1

(√
u

α

)
, cosφ =

√
α

u
, sinφ =

√
1− α

u
. (18)

Hence,
1√
α3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=
√

2GM t+ c2, (19)

or √
(h+R)3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=
√

2GM t+ c2, (20)

From the ICs (2), we have

u(0) =
1

r(0)
=

1

h+R
= α, (21)

Applying this condition on Eq. (20), we obtain

c2 =
√

(h+R)3 sec−1(1) = 0, (22)
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and hence, √
(h+R)3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=
√

2GM t. (23)

The product GM is also given by

GM = gR2, (24)

where R is the radius of the Earth and g is the acceleration due to gravity of the Earth.

Accordingly, the equation (22) gives the falling time as

t =

√
(h+R)3

2gR2

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
, (25)

or in terms of r and h as

t =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

r

)
+

√
r

h+R

√
1− r

h+R

]
. (26)

The object reaches the Earth’s surface when r = R and accordingly the exact falling time

TExact is expressed as

TExact =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

R

)
+

√
R

h+R

√
1− R

h+R

]
. (27)

Newton’s laws of vertical motion for a falling object are well-Known as

v = v0 + gt, v0 = ṙ(0) = 0, (28)

h = v0t+
1

2
gt2, (29)

v2 = v20 + 2gh. (30)

From Eq. (30), the approximate falling time TApprox is expressed as

TApprox =

√
2h

g
. (31)

Therefore, the absolute error in estimating the falling time, in terms of the height h,

Error(h), is given by

Error(h) = TExact − TApprox, (32)

i.e.,

Error(h) =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

R

)
+

√
R

h+R

√
1− R

h+R

]
−

√
2h

g
. (33)
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3 Applications

In this section, we give some applications of the exact formula of the falling time for

various objects in real life. The following approximate values of the radius of Earth and

the acceleration due to gravity of Earth are implemented to conduct the results of this

section:

R ≈ 6400× 103 [meter], g ≈ 10 [meter/s2]. (34)

3.1 Aeroplane

It is well known in the fields of aviation and air transport that the aircrafts, which are

used in internal or international flights, fly at altitudes ranging between 29000 and 35000

feet, equivalent to 9 to 11 kilometers above the Earth’s surface. Perhaps the reason

for flying at this altitude is that such a layer of the Earth’s atmosphere is more stable

than other layers. We are now facing the question that if all of the plane’s engines are

suddenly stopped, how long will it take for them to fall on the ground? To answer that

question, let us consider that the average altitude of aircraft is 10 kilometers above the

Earth’s surface, and by substituting for h = 10 [Km] or h = 10000 [m] in Eq. (27)

we obtain TExact = 44.7796 ≈ 45 seconds, which means that the aircraft takes about 45

seconds to reach the ground in the absence of air resistance. This may coincide with

the same time when the atomic bomb fell on the cities of Hiroshima and Nagasaki in

Japan during the second world war. Applying the approximate formula (31), we have

TApprox = 44.7214 ≈ 45 seconds. The error (32) in this case is too small and given as

Error = TExact− TApprox = 44.7796− 44.7214 = 0.0582 seconds This is because the height

h = 10 [Km] is a very small height if compared with the radius of the Earth.

3.2 Geostationary Satellites

The geostationary satellites are at altitude h = 36000 [Km] above the Earth’s surface and

they are in stationary orbits around the Earth. Assume that the motion of such satellites

is suddenly stopped, regardless of how this happens, then the expected exact time taken

by these satellites to reach the Earth’s surface is calculated from (27) as TExact = 14756

seconds. Converting this value into hours and minutes gives TExact = 4 hours and 6

minutes.

3.3 The Moon around Earth

The Moon is at a distance 384400 Km from the center of the Earth, consequently, the

corresponding height is h = 384400 − 6400 = 378000 [Km]. Substituting h = 378000
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[Km] in (27), we get TExact = 413239 seconds. Converting this value into days and hours

gives TExact = 4 days and 18 hours. This result given the falling time of the Moon on the

Earth (assuming that the Moon is suddenly stopped, whatever the reason) agrees with

the obtained result in Ref. [15] (Problem 5.107, page 141).

3.4 The Earth around Sun

The Earth is at a distance 150× 106 Km from the center of the Sun. In order to estimate

the falling time of the Earth on the Sun (assuming that the Earth is suddenly stopped,

whatever the reason), we modify Eq. (27) as

TExact =

√
(h+Rs)3

2gsR2
s

[
sec−1

(√
h+Rs

Rs

)
+

√
Rs

h+Rs

√
1− Rs

h+Rs

]
, (35)

where Rs is the radius of the Sun (Rs = 6.96 × 105 Km) and gs is the acceleration of

gravity due to the Sun (gs = 273 [meter/s2]). In this case, the height of Earth above the

Sun equals h = 150×106−6.96×105 = 149.304×106 [Km]. Accordingly, Eq. (35) leads to

TExact = 5.61039× 106 seconds. Converting this value into days gives TExact = 64.9 ≈ 65

days. Also, this result agrees with the obtained result in Ref. [15] (Problem 5.108, page

141).

4 Discussion of errors

Using the error equation (33), we present in Tables (1-3) some numerical results, from

which it becomes clear that the amount of error in time is about 20 seconds in the first

500 kilometers above the surface of the earth, as in Table (1).

Table 1: Calculated errors for h = 100, 200, 300, 400, 500 Km.
h [Km] 100 200 300 400 500
Error(h)[S] 1.84057 5.20355 9.55526 14.7048 20.5418

While the error in time is about 58 seconds or approximately one minute, in the first

1000 km, as shown in Table (2).

Table 2: Calculated errors for h = 600, 700, 800, 900, 1000 Km.
h[Km] 600 700 800 900 1000
Error(h)[S] 26.9915 33.999 41.5219 49.5259 57.9827

It is clear from Table (3) that the amount of error in time is approximately 840 sec-
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onds, that is, 14 minutes if the altitude reaches six thousand kilometers.

Table 3: Calculated errors for h = 2000, 3000, 4000, 5000, 6000Km.
h[Km] 2000 3000 4000 5000 6000
Error(h)[S] 163.412 299.287 459.555 640.747 840.537

In addition, it can be indicated from Eq. (33) that the error in time is approximately

twelve thousand seconds, i.e. about three hours and a third of an hour if the body fell

from a height of 36,000 km above the surface of the Earth, which is the same height as

the motion of geosynchronous satellites. In light of these results, it becomes clear to us

that it is preferable not to apply Newton’s laws of vertical motion at altitudes higher

than a thousand kilometers above the surface of the Earth, as the amount of error in the

estimated time of falling objects becomes minutes and increases to hours with the increase

in height of the object above the surface of the Earth.

5 Conclusion

In this paper, Newton’s law of general gravitation was applied to analyze the vertical mo-

tion of an object towards the Earth. The exact falling time formula is obtained explicitly

and such a formula was invested to calculate the falling time of some objects in our real

life. The results revealed that the time taken by a plane, if all of the plane’s engines

are suddenly stopped, to reach the ground was about 45 seconds in the absence of air

resistance. The geostationary satellites, which were at altitude h = 36000 [Km] above the

Earth’s surface, reach the Earth’s surface in 4 hours and 6 minutes, under the assumption

that the motion of such satellites is suddenly stopped, regardless of how this happens. In

addition and under such assumption, the Moon takes about 4 days and 18 hours to fall

on the Earth. Furthermore, the time taken by the Earth to reach the Sun’s surface was

about 65 days. The last two results were in full agreement with the calculations in Ref.

[15] (Problems 5.107 and 5.108, page 141). Finally, the amount of error resulting from

the applications of Newton’s laws of vertical motion was obtained and expressed in terms

of the height. In view of the obtained results, it was recommended to avoid the use of

Newton’s laws of vertical motion at altitudes higher than a thousand kilometers above

the surface of the Earth. This is because as the amount of error in the estimated time

of falling objects becomes minutes and increases to hours by increasing the height of the

object above the surface of the Earth.
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