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ABSTRACT 
The multivariate “Seasonal Vector Autoregressive Moving Average” was used to measure the growth rate of Gross 

Domestic Product (GDP) in five (5) sectors: Agriculture, Industries, Building/Construction, Wholesales/Retails, and 

Services. The data was gathered from the National Bureau of Statistics and spans 33 years, from 1985 to 2017. To 

evaluate the model, real (R) software was used. The variability statistics for the five variables show that all of the 

variables have a seasonality pattern that is not stationary. We difference the data series (once) to obtain stationary 

series and define the season order to indicate the seasonality pattern. We find the best model using Akaike 

information criteria and Bayesian information criteria. The best model was determined to be the SVARMA (4, 1, 1) 

(1, 0, 0)12. We also apply model simplification to the SVARMA (4, 1, 1) (1, 0, 0), 12 model, to exclude statistically 

insignificant parameters. The forecasts revealed that the rate of growth in the Agriculture sector is slowly growing, 

the rate of growth in the Industries sector is slowly decreasing, the rate of growth in the Building/Construction 

sector is increasing, the rate of growth in the Wholesales/Retails sector is not stable, and the rate of growth in the 

services sector is poor. 

 

Keyword: Agriculture, Industries, Building/Construction, Wholesale/Retail, Services, GDP, and 

Seasonal.   

INTRODUCTION 

  

For several years, economics researchers have been involved in forecasting (predicting) data 

activity. For this reason, a variety of forecasting methods have been proposed and developed. 

The number of researchers to investigate will be quantified using data analysis techniques and 

analytical technologies. Nigeria's economy has not been stable over the years, and as a result, the 

country has been plagued by economic challenges, threats, and shocks, both internal and 

external, for decades. Internally; the product of spending and consumption patterns, as well as a 

lack of effective public policy substitution and perception causes changes. Externally, crises may 

be caused by population growth, revolution, or war, among other things. Every country's 

economic growth reflects its ability to increase service and goods production. It refers to an 

increase in a country's Gross Domestic Product (GDP). Macroeconomic variables play a key role 

in any country's economic output. Nigeria's economy has faced a range of challenges in both the 

agricultural and non-agricultural sectors, all of which have led to a slowing of growth, which 

may have an impact on GDP. As a result, this study aims to look into the interrelationships of 

Nigeria's GDP across these sectors. Some factors, such as agriculture, industry, wholesale retail, 

building & services, will be taken into account. This research work on the seasonal multivariate 

time series model for the sectors in Nigeria's GDP will help to improve macroeconomic policy 



 

 

formulation in Nigeria especially by predicting the future trend of output from major sectors like 

Agriculture, Manufacturing industries, General services. The Central Bank of Nigeria (CBN), 

National Bureau of Statistics (NBS), Ministry of Finance, and ministry of planning will 

hopefully gain from the application of findings of this work in their research and statistics 

departments periodically. The results of this study will reawaken interest in the development of 

quantitative skills for statistical economic and financial analysis 

 

Reviews of related work 

Multivariate time series models are very crucial in modeling and identifying the joint structure 

on which these decisions depend. The resulting seasonal multivariate analyses provide good 

insight into the multivariate structure and also a simple guide to model choice and assessment. 

Practically, an elaboration of this basic model is to incorporate time-variation in covariance 

matrices [9], recently in economics, an application was devoted to forecasts US employment 

growth [10] 

Multivariate analysis is suitably applied in making such a forecast. These techniques have 

benefited from big improvements with regard to the easiness of use [4]. [6] Conducted research 

on stock index forecasting: a comparison of classification and level estimation on multivariate 

models, assessing the effectiveness of several multivariate techniques to group the level of 

estimation method, and comparing the relative measurement intensity of the models with respect 

to the trading benefit produced by their forecast. They also came to the conclusion that applying 

the model's threshold trading rules increases returns. 

[5] Examined the seasonality of hip fracture and estimates of season-attribution effects using a 

multivariate ARIMA analysis of population-based evidence. The findings of their study, which 

used the autoregressive integrated moving average (ARIMA) model, revealed that seasonality 

and month have a major impact on hip fracture admission rates. According to the ARIMA 

regression coefficients, hip fractures are often more frequent in January and May. 

[11] Researched the seasonal ecology of recent benthic Ostracoda from the North Cadiz Gulf 

coast using multivariate analysis (Southwestern Spain). They look at the seasonal components of 

ostracodes, and find that, as compared to previous studies, some recovery has degraded the 

system. [7] conducted a multivariate approach to modeling univariate time series using an 

autoregressive model, the model allowed for periodically varying coefficients and adopts vector 

elements in integrated the maximum likelihood method in cointegration check with the annual 

series. The researcher also concluded that it is often to apply transformation for the non-

stationary seasonal time series in order to obtain better results. [3] Looked at the relationship 

between inflation, work rates, and GDP using multivariate time series analysis. The results of the 

multivariate time series analysis using STATA software revealed that the inflation rate has no 

effect on GDP, while the work rate has a negative relationship with GDP. The causality between 



 

 

the variables in the study was also determined using Granger causality. According to their 

findings, all independent variables have a unidirectional relationship with GDP in the short term. 

[6] Investigated how oil price shocks affect investment using a multivariate vector autoregressive 

model with impulse response function and other experiments. Oil price shocks have a negligible 

effect on real GDP, according to the findings. They also came to the conclusion that oil price 

shocks have no absolute effect on actual GDP. To make such a prediction, the multivariate 

model is used. These methods have benefited from significant advancements in terms of ease of 

use. [16] Looked at checking for non-linearity in multivariate time series. The researcher 

considered a multivariate extension of the test proposed by [14] to ignore non-linearity, which 

used main components to resolve the test's dimensionality problem. An adaption of multivariate 

analysis to new technologies such as databases, the internet, economic data, etc. is an emerging 

area. 

Methodology 

SEASONAL OCCURRENCE 

Mostly, seasonality showed in many economic, financial, and environmental variables. However, 

this can also occur in many earnings per share of the organization, which exhibit the 

characteristics of the yearly cyclic method. The unemployment number of a country always show 

the effect as many searches for a job mostly at the end of a year as many students graduated from 

school. Similarly, we can also observe this pattern on the daily temperature of a given location in 

Nigeria, we can also note this in the rate of traveling and the rate of consumption of Natural gas 

is also seasonal. So we can also see that many economic data published in the Central Bank of 

Nigeria bulletin are seasonally adjusted. The X-12 model procedure is based on most adjustment 

techniques, except this model has a seasonal frequency trough, which implies that some 

seasonality remains in the results. For example, the monthly unemployment rate of the United 

State is analyzed in, [15] (chapter three). So, in implementations, even for seasonally adjusted 

results, it is important to consider seasonal models. 

MULTIVARIATE TIME SERIES 

Suppose a K-dimensional vector of time series wt = (w1t, w2t, w3t… wkt).  

A multivariate model is the (kx1) vector (wt) where the ith row of (wt) is (wit). This implies that 

for any time t, wt = (w1t, w2t, w3t … wkt). 

Linearity of multivariate Time Series 
tW  

 Statistically, speaking multivariate model is nonlinear; moreover linear series can often give an 

accurate approximation for making a decision.  
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Inevitability of multivariate model   

A multivariate series  tw is a linear encounter of its lagged values, hence, multivariate time 

series is always a value of the model 
tw as a tool of its lagged values

t iw −
 for i is greater than 0 

plus new information at time t. This can be presented as  
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This equation must be a convergent series and the invertibility condition of the model is that all 
 must be less than 1 in a unit circle. 

STATIONARY PROCESS 

A probability process is said to be stationary if its 1st and 2nd moments are dependent on time. 

That is, a stochastic process wt is stationary, if  

i. 𝐸(𝑤𝑡) = µ  𝑓𝑜𝑟 𝑎𝑙𝑙                                                                                                                  (3.3) 

ii. 𝐸 [(𝑤𝑡 − µ)(𝑤𝑡−𝑘 − µ)′]  = 𝑐𝑜𝑣(𝑤𝑡  )                                                                                 (3.4) 

 

This implies that Γ𝑧(𝑘) ⇒ Γ𝑧(−𝑘)′ for t and 𝑘 = 0,1,2, …. 

 

VECTOR AUTOREGRESSIVE (VAR) MODEL  

In modeling dynamics between a set of variables, the VAR model provides us with an approach. 

This method is specifically concerned with the dynamics of multiple variables. This can be 

written as; 

wt = θ0 + θ1wt-1 + θ2wt-2 + ⋯+ θpwt-p + at      (3.5) 

The VAR (P) model can be written in the matrix form as 
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VECTOR MOVING AVERAGE (VMA) MODEL 

In this case, we will consider a VMA model of (2)-dimensional VMA (1) model, that is 

  1 1t t tw a a  −= + −           (3.6)  

We can also rewrite this, using  1 1 ij
 = , therefore  
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       (3.7) 

This is equivalent to the following equations 

1 1 1 1,11 1, 1 1,12 2 1t t t tw a a a  − −= + − −          

2 2 2 1,21 1, 1 1,22 2 1t t t tw a a a  − −= + − −          

From the prior equations, the coefficient 
1,12 measures the impact of 2 1ta − on the 1tw  in the 

presence of the model, also
1,21 present the effect of 

1, 1ta −
on 2tw  in the midst of 2 1ta − . 

 

VECTOR AUTOREGRESSIVE MOVING AVERAGE (VARMA) MODEL 

An N-dimensional variable tw is a VARMA (p,q) model if a process.  

0( ) ( )t tB w B a  = +           (3.8) 

In which we defined, 0  as a constant vector, 1

1( ) p

k i iB B ==  −    and 1

1( ) q

k i iB B ==  − are 

two matrix polynomials, and { ta } is a sequence of independent and identically distributed 

random vectors with zero mean and positive covariance matrix a  and B is the backward shift 

operator define as Bkwt=wt-k. 

SEASONAL MODEL                 

The direct generalization of the univariate model of seasonal time tw  is written as; 

(1 )(1 ) ( )( )S S

t k k tB B z B B a− − =  −  −        (3.9) 

With this equation, we can also generate the multivariate model.  

Therefore we refer this to the model as the seasonal model. We may also rewrite the equation 

(3.9) to be; 

1 1

S

k k
t tS

B B
z X a

B B

 −  −
=

− −
        (3.10) 

So by letting (1 )(1 )s

t tw B B z= − −   and  
,w e  be the lag autocovariance matrix of wt. It’s straight 

forward to see that  1( )( ) ( )S S S

t k k t k tw B B a B B B a   +=  −  −   − − +     (3.11)  

 See [13] 



 

 

 

ORDER OF SELECTION 

In this work, we will emulate the proposed tool of [1], and that consisting of model specification, 

estimation, and diagnostic checking on multivariate analysis. We will use the recent procedure of 

[2]. But this approach of selecting the model order of multivariate time series was first proposed 

by [12].  Behind the approach is to compare different sets of the multivariate model that amount 

to examining the hypothesis of testing; 

𝐻0;  ∅𝜌 = 0  Versus 𝐻∝;  ∅𝜌 ≠ 0   

INFORMATION CRITERIA  

Models are successful in concluding any mathematical model based on the knowledge criteria. 

So, we understand that all parameters are based on chance, consist of two properties.  Firstly, 

components are concerned with the model data's goodness of fit test, while the second 

component penalizes more complex models.  

These methods are;  

2
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T
=  +         (3.12) 

2

,
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( ) | |a

In T
BIC In K

T
=  +            (3.13) 

MODEL CHECKING 

Model-checking is a major aspect of the examination of the model; it is also known as a 

diagnostic test. In model design, this plays a significant role, such as multivariate normality, a 

typical model is said to be adequate. 

Result 

DATA 

The data used in this work was collected from the National  Bureau of Statistics (NBS), the data 

contain quarterly government records for sectors GDP of Agric, Industries, B/ construction, 

W/Retail, and Services growth rate from 1985-2017, a total of 33 years. 

VARIABILITY OF THE VARIABLES  

 The observation of the variability with the series graph on figure 1, 



 

 

 

FIGURE 1; PLOT OF THE RAW DATA  

   

FIGURE 2; PLOT OF FIRST DIFFERENCE OF THE RAW DATA  

The variability statistics of the five variables in figure 1 indicate that there is a seasonality trend 

in all the variables. In particular, the graph of building and construction shows linearity changing 

without limits, together with that of services, wholesale, and retails. While that of industries and 

agriculture abrupt start and permanent effect of linearity were also indicated. In all the variable 

graphs, we observed that the effect of the trend started in 2004 that was when the GDP of these 

sectors started to experience challenges or shock on the economic market. We all also noticed 

that the graph in figure 1 is not for stationary series, so to make it to be stationary we plot the 

graph of the first difference, which will help us to indicate the seasonality trend. So we 

difference the data series (once) to obtain stationary series and identify the season order (see 

figure 2) 
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Table 1; MODEL SELECTION USING AIC AND BIC CRITERIA 

S/N VAR –ORDER AIC BIC 

1 SVARMA(4,1,1)(1,0,0)12 -26.789 -23.837 

2 SVARMA(3,1,0)(1,1,0)4 -23.267 -21.0274 

3 SVARMA(2,1,0)(1,0,0)4 -24.2535 -21.617 

4 SVARMA(3,1,0)(1,0,0)12 -25.9821 -22.6453 

5 SVARMA(3,1,0)(1,0,0)4 -25.1474 -22.5869 

6 SVARMA(4,1,0)(1,1,0)12 -25.2186 -22.1894 

7 SVARMA(4,1,1)(1,0,0)3 -25.817 -22.0269 

8 SVARMA(4,1,1)(1,0,0)6 -25.8361 -22.2874 

9 SVARMA(4,1,0)(2,0,0)12 -25.0187 -22.0994 

10 SVARMA(4,1,0)(1,0,0)12 -26.3964 -23.4431 

 

 In the order of selecting the model in table 1, K=5, the parameters of the model (no. of variables 

used in the work). P= SVARMA (p,d,q)(P,D,Q)S (lag); which stands for the vector order of the 

model. T=132, stand for the sample size. On applying the sequential likelihood ratio test, using 

the information criteria on the data. We subjected the data into SVARMA (p,d,q)(P,D,Q)S (lag) 

models, in the order; we selected the best model in table 1. We observed that the order selected 

by AIC, and BIC, of the SVARMA (4,1,1)(1,0,0)12 model, have the least value of AIC, and  BIC. 

So statistically speaking, the SVARMA (4,1,1)(1,0,0)12 model of the  GDP order of selection is 

the best in modeling the data  GDP in Nigeria.  

MODEL PRESENTATION OF THE FITTED SVARMA (4, 1, 1) (1, 0, 0)12 MODEL    

The fitted SVARMA(4,1,1)(1,0,0)12 model of the logarithm growth rates of the quarterly sectors 

GDP of agriculture, industries, building &construction, wholesale & retails, and services in 

Nigeria can be presented as follows; 

𝑍𝑡 =

[
 
 
 
 
0.0097
0.0030
0.0351
0.0158
0.0124]

 
 
 
 

+

[
 
 
 
 
−0.0713   − 0.0084    0.0742   0.01269   − 0.3112
1.2032   − 0.3159    0.5776   − 0.6418   − 0.1086  
−0.0903  − 0.1084  − 0.0832  0.0370  − 0.0702
0.1599      0.1521  − 0.1680  − 0.1616  − 0.0637
0.0537     0.0379   − 0.0841   − 0.0048  − 0.0676 ]

 
 
 
 

𝑍𝑡−1 

+

[
 
 
 
 

−0.1405   0.0244    0.2240   0.10680   − 0.2285
0.5970   − 0.0834    − 0.1380   − 0.4973  0.0180  
−0.0478  − 0.0192 − 0.1190  − 0.0290  0.0348
  0.1477    0.0569  0.2830  − 0.0997  − 0.4033

  −0.0021    0.0266   0.1090   − 0.0223  − 0.1791 ]
 
 
 
 

𝑍𝑡−2 

+

[
 
 
 
 
−0.0170   − 0.0036    0.0876   0.0972   − 0.1408
0.6349   − 0.1894    0.0576   − 0.6138   0.6543  
0.0233  − 0.0199  − 0.0346  0.0778  − 0.1380

0.1566      0.0078  0.0734  − 0.1367  0.0235
0.1182    − 0.0077   0.0658   0.0313  − 0.2295 ]

 
 
 
 

𝑍𝑡−3 



 

 

+

[
 
 
 
 

0.6408   − 0.0497    0.1350   − 0.0190   0.0847
0.2791      0.0932    0.4450   − 0.5166   − 0.0986  
−0.1913  − 0.0908  0.6510      0.0876      0.1881
0.0492    − 0.0402  0.4260  0.5966  − 0.1747
0.0775    − 0.0804   0.2700   − 0.0460  0.6085 ]

 
 
 
 

𝑍𝑡−4 

+

[
 
 
 
 
−0.02426  − 0.03012   − 0.0677 − 0.1535   0.3541
−0.03301     0.16157   − 0.7219   − 0.2516   0.8880  

−0.04015        0.01056  0.3094  0.0139  − 0.0893
0.00385      0.00166  0.3018  − 0.1221  − 0.0123
−0.08460    0.02527   0.5310   − 0.1652  0.1129 ]

 
 
 
 

𝑍𝑡−1,12 

[
 
 
 
 
0.2833   − 0.0275  0.0288  − 0.0683 − 0.300
1.111    − 0.2316    0.5661   − 0.4788   0.081  
−0.1269  − 0.1302  0.1964  0.0589 − 0.1450
−0.1637     0.1922  0.3205  0.3656  − 0.740
0.0706    0.0406   0.1348   0.121  − 0.172 ]

 
 
 
 

𝑎𝑡−1 

And the residual covariance matrix is 

Σ𝑎 =

[
 
 
 
 

0.00382  0.00308  0.00144  0.00316  0.00164
0.00308  0.003028  0.001296  0.002977  0.003225
0.00144  0.001296  0.00264  0.001285  0.001589
0.00316  0.002977  0.001285  0.005377  0.001699
0.00164  0.003225  0.001589  0.001699  0.001792]

 
 
 
 

 

Similarly, we can rewrite the above matrix model as the equation below; 

𝑍1𝑡 = 0.0097 − 0.0713𝑍1,11,𝑡−1 − 0.0084𝑍1,12,𝑡−1 + 0.0742𝑍1,13,𝑡−1 +  

0.01269𝑍1,14,𝑡−1 − 0.3112𝑍1,15,𝑡−1  − 0.1405𝑍2,11,𝑡−2 + 0.0244𝑍2,12,𝑡−2 + 0.2240𝑍2,13,𝑡−2 +

0.10680𝑍2,14,𝑡−2 − 0.2285𝑍2,15,𝑡−2 − 0.0170𝑍3,11,𝑡−3 − 0.0036𝑍3,12,𝑡−3 + 0.0876𝑍3,13,𝑡−3 +

0.0972𝑍3,14,𝑡−3 − 0.1408𝑍3,15,𝑡−3 + 0.6408𝑍4,11,𝑡−4 − 0.0497𝑍4,12,𝑡−4 + 0.1350𝑍4,13,𝑡−4 −

0.0190𝑍4,14,𝑡−4 + 0.0847𝑍4,15,𝑡−4 − 0.02426𝑍12,11,𝑡−12 − 0.03012𝑍12,12,𝑡−12 +

0.0677𝑍12,13,𝑡−12 − 0.1535𝑍12,14,𝑡−12 + 0.3541𝑍12,15,𝑡−12 + 0.2833𝑎1,11,𝑡−1 −

0.0275𝑎1,12,𝑡−1 + 0.0288𝑎1,13,𝑡−1 − 0.0683𝑎1,14,𝑡−1 − 0.3000𝑎1,15,𝑡−1   

𝑍2𝑡 = 0.0030 + 1.2032𝑍1,21,𝑡−1 − 0.3156𝑍1,22,𝑡−1 + 0.5776𝑍1,23,𝑡−1 

− 0.6418𝑍1,24,𝑡−1 − 0.1086𝑍1,25,𝑡−1  + 0.5970𝑍2,21,𝑡−2 − 0.0834𝑍2,22,𝑡−2 − 0.1380𝑍2,23,𝑡−2 −

0.4973𝑍2,24,𝑡−2 + 0.0180𝑍2,25,𝑡−2 + 0.6349𝑍3,21,𝑡−3 − 0.1894𝑍3,22,𝑡−3 + 0.0576𝑍3,23,𝑡−3 −

0.6138𝑍3,24,𝑡−3 + 0.6543𝑍3,25,𝑡−3 + 0.2791𝑍4,21,𝑡−4 + 0.0932𝑍4,22,𝑡−4 + 0.4450𝑍4,23,𝑡−4 −

0.5166𝑍4,24,𝑡−4 − 0.0986𝑍4,25,𝑡−4 − 0.03301𝑍12,21,𝑡−12 + 0.1616𝑍12,22,𝑡−12 −

0.7219𝑍12,23,𝑡−12 − 0.2516𝑍12,24,𝑡−12 + 0.8880𝑍12,25,𝑡−12 + 1.1115𝑎1,21,𝑡−1 −

0.02316𝑎1,22,𝑡−1 + 0.5661𝑎1,23,𝑡−1 − 0.4788𝑎1,24,𝑡−1 + 0.0810𝑎1,25,𝑡−1   

𝑍3𝑡 = 0.0351 − 0.0903𝑍1,31,𝑡−1 − 0.1084𝑍1,32,𝑡−1 − 0.932𝑍1,33,𝑡−1 +  

0.0370𝑍1,34,𝑡−1 − 0.0702𝑍1,35,𝑡−1  − 0.0478𝑍2,31,𝑡−2 − 0.0192𝑍2,32,𝑡−2 − 0.1190𝑍2,33,𝑡−2 −

0.0290𝑍2,34,𝑡−2 + 0.0348𝑍2,35,𝑡−2 + 0.0233𝑍3,31,𝑡−3 − 0.0199𝑍3,32,𝑡−3 − 0.0346𝑍3,33,𝑡−3 +

0.0778𝑍3,34,𝑡−3 − 0.1380𝑍3,35,𝑡−3 − 0.1913𝑍4,31,𝑡−4 − 0.0908𝑍4,32,𝑡−4 + 0.6510𝑍4,33,𝑡−4 +

0.0876𝑍4,34,𝑡−4 + 0.1881𝑍4,35,𝑡−4 − 0.0402𝑍12,31,𝑡−12 + 0.0106𝑍12,32,𝑡−12 +



 

 

0.3094𝑍12,33,𝑡−12 + 0.0139𝑍12,34,𝑡−12 − 0.0893𝑍12,35,𝑡−12 − 0.1259𝑎1,31,𝑡−1 −

0.13026𝑎1,32,𝑡−1 + 0.1964𝑎1,33,𝑡−1 + 0.0589𝑎1,34,𝑡−1 − 0.1450𝑎1,25,𝑡−1   

𝑍4𝑡 = 0.0158 + 0.1599𝑍1,41,𝑡−1 + 0.1521𝑍1,42,𝑡−1 − 0.1680𝑍1,43,𝑡−1 −  

0.1616𝑍1,44,𝑡−1 − 0.0637𝑍1,45,𝑡−1  + 0.1477𝑍2,41,𝑡−2 + 0.0569𝑍2,42,𝑡−2 + 0.0283𝑍2,43,𝑡−2 −

0.0997𝑍2,44,𝑡−2 − 0.4033𝑍2,45,𝑡−2 + 0.1556𝑍3,41,𝑡−3 − 0.0078𝑍3,42,𝑡−3 − 0.0738𝑍3,43,𝑡−3 −

0.1367𝑍3,44,𝑡−3 + 0.0235𝑍3,45,𝑡−3 + 0.0492𝑍4,41,𝑡−4 − 0.0402𝑍4,42,𝑡−4 + 0.4260𝑍4,43,𝑡−4 +

0.5966𝑍4,44,𝑡−4 − 0.1747𝑍4,45,𝑡−4 + 0.00385𝑍12,41,𝑡−12 + 0.00166𝑍12,42,𝑡−12 +

0.3018𝑍12,43,𝑡−12 − 0.1221𝑍12,44,𝑡−12 − 0.0123𝑍12,45,𝑡−12 − 0.1637𝑎1,41,𝑡−1 +

0.1922𝑎1,42,𝑡−1 + 0.32054𝑎1,43,𝑡−1 + 0.3656𝑎1,44,𝑡−1 − 0.7400𝑎1,45,𝑡−1   

𝑍5𝑡 = 0.0124 + 0.0537𝑍1,51,𝑡−1 + 0.0379𝑍1,52,𝑡−1 − 0.0841𝑍1,53,𝑡−1 −  

0.0048𝑍1,54,𝑡−1 − 0.676𝑍1,55,𝑡−1  − 0.0021𝑍2,51,𝑡−2 + 0.0266𝑍2,52,𝑡−2 + 0.1090𝑍2,53,𝑡−2 −

0.0223𝑍2,54,𝑡−2 − 0.1791𝑍2,55,𝑡−2 + 0.1182𝑍3,51,𝑡−3 − 0.0078𝑍3,52,𝑡−3 + 0.0658𝑍3,53,𝑡−3 +

0.0313𝑍3,54,𝑡−3 − 0.2295𝑍3,55,𝑡−3 + 0.0775𝑍4,51,𝑡−4 − 0.0804𝑍4,52,𝑡−4 + 0.2700𝑍4,53,𝑡−4 −

0.0460𝑍4,54,𝑡−4 + 0.6085𝑍4,55,𝑡−4 − 0.0846𝑍12,51,𝑡−12 + 0.2527𝑍12,52,𝑡−12 +

0.5310𝑍12,53,𝑡−12 − 0.1652𝑍12,54,𝑡−12 + 0.1129𝑍12,55,𝑡−12 + 0.0706𝑎1,51,𝑡−1 +

0.0406𝑎1,52,𝑡−1 + 0.1348𝑎1,53,𝑡−1 + 0.0121𝑎1,54,𝑡−1 − 0.172𝑎1,55,𝑡−1   

Where Z1t, Z2t, Z3t, Z4t, and Z5t are Agriculture, Industries, Building & Construction, Wholesale 

& Retail, and Services 

The standard error of the coefficient estimates in the model showed that some of the standard 

error coefficient estimates and the residual on the parameters were not statistically significant at 

the 5% level. Hence we have to carry out model simplification by removal of the insignificant 

statistical coefficient of the estimated parameters.  

MODEL CHECKING OF THE RESIDUAL ON SIMPLIFIED SVARMA (4,1,1)(1,0,0)12 

 

 
FIGURE 3 RESIDUAL PLOTS OF THE SIMPLIFIED SVARMA (4,1,1)(1,0,0)12 MODEL FOR THE 

SECTORS GDP OF AGRICULTURE, INDUSTRIES, BUILDING & CONSTRUCTION, WHOLESALE & 

RETAILS AND SERVICES IN NIGERIA 
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FIGURE 4 RESIDUAL CROSS CORRELATION MATRICES  OF THE SIMPLIFIED SVARMA 

(4,1,1)(1,0,0)12 MODEL FOR THE SECTORS GDP OF AGRICULTURE, INDUSTRIES, BUILDING & 

CONSTRUCTION, WHOLESALE & RETAILS AND SERVICES IN NIGERIA  

 

 

 
FIGURE 5; PLOT OF LJUNG-BOX STATISTICS OF THE RESIDUAL  OF THE SIMPLIFIED SVARMA 

(4,1,1)(1,0,0)12 MODEL FOR THE SECTORS GDP OF AGRICULTURE, INDUSTRIES, BUILDING & 

CONSTRUCTION, WHOLESALE & RETAILS AND SERVICES IN NIGERIA 

 From the plots of the simplified SVARMA (4, 1, 1) (1, 0, 0)12, the residual of the series plot 

indicates that the model is of the goodness of fit. Whereas figure 4 also shows the residual cross-

correlation matrices, as we can see, the dashed lines of the serials correlations indicate the 

approximate 2 standard error limits of the correlations. That is±2/√𝑇 . Based on the serial 

correlation matrices, we now conclude that the residual of the model has no strong serial 

correlation. The plot of the P-values of the Qk(m) statistics applied to the residual of the 

simplified model also confirmed that the model is fitted. So in conclusion, we agreed that the 
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simplified SVARMA(4,1,1)(1,0,0)12 is adequate for the model of  GDP of agriculture, industries, 

building & construction, wholesale & retails, and services in Nigeria. 

Table 2; Forecasts, Standard Error and Root Means Square of quarterly sectors GDP, in 

logarithm, for Agricultures, Industries, Building $ Construction, wholesale $ Retail, and 

Services using SIMPLIFIED SVARMA (4,1,1)(1,0,0)12 model 

Forecasts 

   AGRIC. INDUS B$CON W$RET 

SERVICES 

 [1,]   8.053  8.439   5.155   7.560    7.116 

 [2,]   8.230 8.305   5.315   7.792    7.377 

 [3,]   8.422 8.583   5.084   7.598    7.284 

 [4,]   8.460 8.518   5.190   7.713    7.430 

 [5,]   8.154 8.800   5.227   7.700    7.283 

 [6,]   8.326 8.502   5.411   7.967    7.532 

 [7,]   8.500 8.705   5.164   7.709    7.407 

 [8,]   8.560 8.529   5.268   7.834    7.554 

 [9,]   8.251 8.835   5.293   7.780    7.404 

[10,]   8.420 8.485   5.494   8.074    7.653 

[11,]   8.575 8.720   5.240   7.776    7.512 

[12,]   8.645 8.525   5.343   7.917    7.660 

 

 

 

Standard Errors of predictions Root MSE of predictions 

0.083  0.1670   0.049   0.0724  0.046 

0.102 0.201  0.0614   0.0897  0.0598 

0.114  0.222  0.0674  0.1033   0.0677 

0.128  0.233  0.0714  0.1178  0.0718 

0.153  0.257  0.0895  0.1519   0.0940 

0.177  0.273  0.0964  0.1689   0.1048 

0.192  0.284  0.1006   0.184   0.1128 

0.206  0.298  0.104   0.200   0.1178 

 0.226  0.305 0.116  0.224  0.1340 

0.244  0.315  0.1207  0.2382   0.1431 

 0.257  0.324  0.1245  0.2507  0.1509 

 0.268   0.334  0.1277  0.2632   0.1567 

 

0.093   0.186   0.0551   0.08052   0.051 

10.994   20.79   6.684    9.784    7.0636 

 9.376   17.41   5.136    9.429      5.84 

 10.53     13.24   4.31   10.46     4.420 

 15.64    20.00    9.96   17.68     11.18 

  16.20  16.94   6.605   13.62    8.57 

  13.87   14.38   5.34    13.68     7.67 

  13.63   16.34  4.83   14.25     6.308 

 17.24     12.11    9.50   18.91 11.77 

 16.84    14.98   6.11   14.54  9.230       

 15.25    14.028   5.65   14.42  8.850  

 13.89   14.56    5.210   14.78    7.81 

 

 

 

 



 

 

Discussion 

Variability (graphical) presentations of the variables were carried out on the variables of the 

model to confirm the seasonality trend. We also adopt the first different process to obtain the 

seasonal order of the model. By adoption of information criteria on the data in order of selecting 

the model in table 1, we observed that the order selected by AIC, and BIC, of the SVARMA 

(4,1,1)(1,0,0)12 model, have the least value of AIC, and  BIC. However, we select the SVARMA 

(4, 1, 1)(1,0,0)12 model as the best in modeling the data  GDP in Nigeria. We also examine one-

step to twelve-step (3 years) ahead projections of the rates at the projected origin 2017. 12. 12. 

We include the standard errors and the predictions' root mean square error. We found from the 

results tables that the forecast point of the five series moves close to sample means of increasing 

data at the forecast horizon, which indicates the proof of reverting means as we predicted. 

Secondly, with the horizon, the Standard Error of Prediction and the root MSE of the predictions 

increase. So this is reasonable because a stationary SVARMA (4, 1, 1) (1, 0, 0)12 is a mean-

reverting series with the fact that, there exists long-term stability in the variables. The root means 

square error and the standard error of the forecast in table 2 can also be used to construct interval 

predictions. For instance, a five-step 95% interval for the Agriculture GDP is  0.153 ±

1.96𝑋15.64     and 0.153 ± 1.96 + 11.18 respectively. 
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