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ABSTRACT 9 
 10 

This paper introduces a family of distributions based on generalized moment 11 

exponential power series (GMEPS) distribution which is a general form of the moment 12 

exponential power series (MEPS) distribution proposed by Sadaf (2014). This new 13 

family is developed through compounding generalized moment exponential (GME) 14 

distribution and truncated power series (PS) distributions. This new family have some 15 

new sub models such as GME geometric distribution, GME Poisson (GMEP) 16 

distribution, GME logarithmic (GMEL) distribution and GME binomial (GMEB) 17 

distribution.  Properties of GMEPS family of distributions are studied, among them; 18 

quantile function, order statistics, moments and entropy. Some special models in the 19 

GMEPS family of distributions are provided. The estimates of parameters of GMEPS 20 

distribution are obtained through maximum likelihood (ML) method is applied to obtain 21 

and a simulation study is conducted to check the convergence of ML estimators of the 22 

parameters of GMEG distributions. To check validity of these distributions, two sets of 23 

real data are used and the results demonstrate that the sub-models from the GMEPS 24 

family can be considered as suitable models under several real situations. 25 

 26 
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1. INTRODUCTION 32 

 33 
 34 

    The problem of finding a suitable model for the real life data has been studied 35 

extensively in literature, however, there are many situations where existing models are 36 

not suitable or less representative of real data, therefore, as a result to resolve this 37 

situation one needs to develop a general model. The well-known and existed 38 

distributions are very limited in their characteristics, for example the distributions: 39 

exponential, Rayleigh, Weibull, gamma and beta are unable to show wide flexibility in 40 

modeling many real situations. In 1997, some authors started the use of shape 41 

parameter(s) for the purpose of generalization of any probability distribution and such 42 

techniques are continuously in practice from the last two decades. In literature, various 43 

distributions through compounding lifetime distributions with discrete distribution have 44 

been discussed to model lifetime data. Compounding lifetime distributions have been 45 

obtained by mixing up the distribution when the lifetime can be expressed as the 46 

minimum (maximum) of a sequence with a discrete random variable. This idea was first 47 

pioneered by Adamidis and Loukas (1998) and they compounding the exponential 48 
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random variable simultaneously with a geometric random variable. Several authors 49 

introduced new lifetime distributions (see for example; Kus (2007), Barreto-Souza et al. 50 

(2011), and Lu and Shi (2012)). 51 

 52 

 53 

 In recent years, a great effort has been made to define new compounding families of 54 

distributions by mixing lifetime distributions with power series distributions. The new 55 

families extend some compound distributions and yield more flexibility in modeling 56 

several practical data. Some authors defined new families of lifetime distributions (see 57 

for example; exponential-power series (PS) distribution [ See Chahkandi and Ganjali; 58 

2009] , Weibull-PS distributions [ See Morais and Barreto-Souza; 2011], generalized 59 

exponential PS distribution [ Mahmoudi and Jafari ; 2012], extended Weibull PS 60 

distribution [ See Silva et al. ; 2013]  Burr XII PS distribution [ See Silva and Corderio ; 61 

2015],  62 

 63 

The moment exponential (ME) (or length biased) distribution was proposed by Dara 64 

(2012) and discussed hazard and reversed hazard rate functions. The ME distribution has 65 

the pdf  as:  66 

          67 

 2( ; ) , , 0. 1yg y ye y                                                             68 

It is also called gamma distribution  2,G  . Followed the technique 69 

generalizing a distribution used by iqbal et al. (2013), the pdf of the generalized moment 70 

exponential distribution is derived by Sadaf (2014), after applying transformation 71 

,Y X  in (1) as 72 

 73 

 2 2 1( ; , ) , , , 0. 2xg x x e x
       

 

74 

 75 

Also, a discrete r.v. Z is a family member of PS distributions which is truncated at zero 76 

and pmf of Z is: 77 

( ; ) , 1,2,3...,                                                         (3)
( )

z

za
P Z z z

K





    78 

where, 0   is the scale parameter. The coefficients  
,

za s  depend only on 79 

1

, ( ) z

z

z

z K a 




 is finite, '(.)K and ''(.)K  denote its first and second derivatives, 80 

respectively. Noack (1950) derived (3) and this family contains some well-known PS 81 

family of distributions such as the binomial, geometric, logarithmic, negative binomial 82 

and Poisson distributions.  83 

 84 

In this article, a quite flexible family of distributions based on GMEPS 85 

distributions is introduced and applied on positive data and we find here some of its 86 

properties which will show wider applications in the research areas of reliability and 87 

engineering. The GMEPS family of distributions permit flexibility in a real data 88 

modeling. We shall see that the GMEPS family distributions allow for different hazard 89 
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shapes i.e. increasing or decreasing or bathtub (increasing or decreasing) failure rates. 90 

We shall also see later that the GMEG i.e. member of GMEPS family distributions 91 

provides significantly better fits than Weibull, exponential and exponentiated exponential 92 

distributions for two data sets.  93 

 94 

   The contents of the remaining part of this paper is arranged as follows: Section 2 95 

deals with derivation of GMEPS distribution, cumulative, survival and hazard rate 96 

functions of GMEPS family distributions. In the following section 3, some Statistical 97 

properties like quantile, moments, entropy and order statistics are presented. Section 4 98 

related to some special sub-models of GMEPS distribution. In Section 5, maximum 99 

likelihood (ML) estimators for the unknown parameters on the basis of the family are 100 

obtained and a simulation study is carried out on the basis of ML estimates and of 101 

method of moments. In Section 6, GMEG distribution is applied on two data sets 102 

[Murthy et al.;2004,  Bjerkedal ;1960 ] and comparison is made with reputed lifetime 103 

models via statistical analysis which show the flexibility and applicability of the 104 

proposed family of distributions. Finally, Section 7 is devoted for some concluding 105 

remarks. 106 

 107 

 108 

2. NEW FAMILY OF DISTRIBUTIONS 109 

 110 
In this section, the GMEPS family of distributions is proposed. This new family is 111 

derived after compounding the generalized ME distribution and PS distributions.  112 

Let 1 2, ,..., zX X X be iid r.v’s having GME distribution with pdf (1) and the 113 

following cdf: 114 

( ; , ) 1 ( ; , ) where ( ; , ) (1 ) xG x H x H x x e
             115 

Suppose that Z has a zero truncated power series distribution with the pmf (2). Let 116 

(1) 1 2min{ , ,..., }zX X X X independent of ' ,X s  then the conditional pdf of 117 

(1)X Z is obtained as follows  118 

 
(1)

12 2 1( ; , ) ( ; , ) .
zx

X Z
f x z z x e H x

     
   119 

The joint pdf of 
(1)X  and Z is as follows 120 

 121 

 
(1)

2 2 1
1

( ; , ) ( ; , ) .
( )

z x
zz

X Z

z a x e
f xz H x

K

  
   



 


  122 

The probability density of a GMEPS family of distributions can be defined by the 123 

marginal pdf of  X, that is, 124 

 2 2 1 ' ( )
( ; ) , , , , , 0.                  (4)

( )

x K H x
f x x e x

K

  
    



     125 

where ( , , )    is a set of parameters. A random variable X with pdf (3) is denoted 126 

by X~GMEPS ( , , ).    127 

Furthermore, the cdf of GMEPS family of distributions corresponding to (3) is 128 

obtained as follows 129 
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  
( ; ) 1 .                                            (5)

( )

K H x
F x

K




    130 

Note that 131 

If 1  the GMEPS family is reduced to MEPS (Sadaf (2014)).  132 

 133 

In addition, the reliability and hazard rate functions for GMEPS family of 134 

distributions, respectively, take the following forms 135 

      
 ( )

( ; ) ,                                 (6)
( )

K H x
R x

K




   136 

and, 137 

        
 

 

2 2 1 ' ( )
( ; ) .                           (7)

( )

xx e K H x
h x

K H x

   



 

   138 

3.  STATISTICAL PROPERTIES OF THE  

139 

 140 

In this section, some statistical properties including expansion for pdf (3), 141 

quantile function, rth moment, Re'nyi entropy and distribution of order statistics for the 142 

GMEPS family of distributions are obtained. 143 

 144 

3.1   Useful expansion  145 

 146 

In this subsection, two important propositions are provided. The first proposition 147 

indicates that the GMEPS family of distributions has the GME distribution as a special 148 

limiting case. While the second proposition provides useful expansion for the pdf of 149 

GMEPS distribution. 150 

 151 

Proposition (1)  152 

 153 

The GME distribution with parameters  and  is a limiting special case of GMEPS 154 

family of distributions when 0  . 155 

  Proof: By applying 

1

( ) ,z

z

z

f a 




  for 0x   in cdf (4), then we obtain 156 

                  
 

1

00

1

( )

( ; ) 1 .

z

z

z

z

z

z

a H x

Lim F x Lim

a


















  




 157 

 By using L.H.  rule, we have 158 
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 
11

1
0

2

0 1 1

1
0

2

( )[1 ( ) ]

( ; ) 1 .

1

z

z

z

z

z

z

H x a Lim za H x

Lim F x

a Lim za
























  






  







 159 

Hence, 160 

0
( ; ) 1 (1 ) ,xLim F x x e

 









     161 

which is the cdf of the GME distribution. 162 

 163 

Proposition (2)  164 

 165 

The density function of GMEPS family can be expressed as a linear combination of the 166 

density of 
(1) 1 2min{ , ,... }zX X X X  167 

Proof. 168 

Since
1

1

'( ) ,z

z

z

f za 






 then the pdf (3) can be expressed as follows169 

(1)

1

( ; ) ( ; ) ( ; ),                                         x

z

f x P Z z g x z 




   170 

where 
(1)

( ; )xg x z  is the pdf of  
(1) 1 2min{ , ,..., }zX X X X given by 171 

 172 

(1)

2 2 1 1( ; ) (1 ) , , , 0.z z x

Xg x z z x x e x
           173 

 174 

3.2    The Lambert W function 175 
 176 

The Lambert W function was developed in 1758 and 1779 by Lambert and Euler 177 

respectively. This name Lambert W function, now a days, a standard word in algebra 178 

through the solution of equation by computer. In the 1980s, Maple and related material 179 

published by Corless et al. (1996) showed almost complete survey this function. This 180 

function is based on multivalued which is a solution of the following equation 181 

                        expW z W z z  182 

where z is in general a complex number. The W(z) has two real branches when it 183 

becomes real and it is only possible if z is such that  1/z e  . The symbol 
1W
 is used 184 

to denote real negative branch if its values in ( , 1]  . The symbol 
0W   is real positive 185 

or principal branch containing values in [ 1, )  .  186 

 187 

Lemma 1 Let ,a b and c  be three numbers of complex type, the equation 188 

zz ab c   has the solution  189 

  

 
  

1
log

log

cz c W ab b
b

   190 

 191 
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where W denotes the lambert W function and z C   192 

 193 

3.2.1 Quantile function of the new GMEPS family 194 

 195 

In this subsection, the quantile function ( )Q p of the GMEPS distribution is 196 

derived and which is defined by ( )Q p p , and is the root of the following equation 197 

 ( ( ))(1 ( ( )) )
1 , 0 1.

( )

Q pK Q p e
p p

K

  




     198 

Let ( ) (1 ( ( )) ).B p Q p    Then, 199 

 1

( )

1

(1 ) ( )
( ) .B p

K p K
B p e

e





 
   200 

Then the solution for this ( )B p is  201 

 1

( )

1

(1 ) ( )
( ) [ ],B p

K p K
B p e W

e





 
   202 

and where  (.)W  is the -ve branch of this Lambert W function following to Corless et 203 

al. (1996)). Consequently, the ( )Q p  of the GMEPS family is given by solving the 204 

following equation for ( ).Q p  205 

 1

1

(1 ) ( )1
( ( )) [ ].                                              (8)

K p K
Q p W

e




 

 
     206 

3.3    Moments and moment generating function 207 

 208 

The rth moment of a r.v X  from the GMEPS distribution, is 209 

(1)

1 0

' ( ; ) ( ; ) .r

r X

z

P Z z x g x z dx 




    210 

Then, 211 

2 2 1 1

1 0

' ( ; ) (1 ) .r z z x

r

z

P Z z z x x e dx
     


   



   
 

212 

Let 
1u x du x dx      , then 213 

1

1 0

' ( ; ) (1 ) .

r

z uz

r

z

u
zP Z z u u e du



 



 



 
   

 
 

 

214 

By using binomial series more than one times, then  215 

1

1 0 0

1
' ( ; ) .

r

z
i zu

r

z i

z u
z P Z z u e du

i



 


 


 

   
    

  
   216 

After some simplifications, it takes the following form 217 
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1

1 0

1
1

' , 1,2.... (9)

( )

                                      

z

zz

r r r
i

z i

r
a i

z
r

i
K z 






 

 


 

 
        

 
218 

Based on the first four moments of the GMEPS family, the measures of skewness ( )SK  219 

and kurtosis ( )K  can be obtained from following relations respectively 220 

1

1

3 2 4

3 2 1 1 4 3 1 2 1 1

3 2 2
2 22

2

' 3 ' ' 2 ' ' 4 ' ' 6 ' ' 3 '
, ,

( ' ' )
( ' ' )

SK K
         

 
 

    
 




 

221 

where,
1 2 3', ', '    and 

4 ' can be obtained from (9), by substituting 1,2,3,4.r   222 

Also, the mgf  ( )XM t  is 223 

0

( ) ',
!

r

X r

r

t
M t

r






  224 

where, 'r  is the rth raw moment. And then by using (9), the mgf of GMEPS is as 225 

follows: 226 

1

1 0

1
1

( ) , 1,2....

! ( )

z r

zz

X r r
i

z i

r
a t i

z
M t r

i
r K z 




 

 


 

 
        

 
  227 

3.4     Order statistics 228 

 229 

In this subsection, an expression for the pdf of the ith order statistics from the GMEPS 230 

distribution is derived. In addition, the distributions of the smallest and largest order 231 

statistics are obtained. 232 

Let 1 2, ,... nX X X be a simple random sample from a GMEPS family with pdf (4) and 233 

cdf (5). Let 1: 2: :...n n n nX X X   denote the corresponding order statistics from the 234 

sample. The pdf of : , 1,...i nX i n is given by 235 

1

:

1
( ; ) ( ; )[ ( ; )] [1 ( ; )] ,                                     (10)

( , 1)

i n i

i nf x f x F x F x
i n i

     
  

 236 

where, (.,.) is the beta function. By using cdf (5) and applying the binomial expansion 237 

in (10), then we get 238 

 
 1

:

0

(1 )1( ; )
( ; ) 1 .

( , 1) ( )

n j i
x

i
j

i n

j

K x eif x
f x

ji n i K

  




 






  
   
       

  239 

 240 

Now, since an expansion for    
n j i

K H x
 

 can be written as follows  241 

     
1

1 ,

n j i
n j i z

z z x

z

z

K H x a e x
   

 
 





 
  
 


 

242 
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     

   

1

2
2 232

1 2

(1 ) 1

1 1 1 ... .

n j i n j i
x x

n j i

x x

K x e a e x

aa
e x e x

a a

 

 

   

   

   

   

   
 

 

 

   

 
     

 

243 

Hence, 244 

  

  

1

1

0 1

(1 )

1 , , 1,2,... (11)

n j i
x n j i

n j i
m

x m
m m

m

K x e a

a
e x m

a





 

 

 

 

 
  

 


 



  

 
   

 


245 

According to Gradshteyn and Ryzhik (2000) for a positive integer, we have the following 246 

relation 247 

,

0 0

.

n j i

m m

m n j i m

m m

Y d Y

 
 

 

 

 
 

 
   248 

Then (11) can be written as follows 249 

     1 ,

0

(1 ) ( ) 1 , (12)
n j i n j i m

x n j i x

n j i m

m

K x e a d x e
       

    
   

 



    250 

where, 
,0 1n j id     and the coefficients

,n j i md  
 are easily determined from the 251 

following recurrence equation 252 

1

, ,

1

[ ( 1) ] , 1.
t

n j i t m n j i t m

m

d t m n j i t d t

    



       253 

In addition,  254 

   
1

1

' (1 ) (1 ) .
z

x x

z

z

K x e z a x e
       

 
 



    255 

 256 

Let 1k z  , then the previous equation can be expressed as 257 

 

258 

    1

0 1

' (1 ) ( 1) (1 ) ,                        (13)
k

x x k
k k

k

a
K x e k x e

a

       


  



    
 

259 

Then, the pdf of the ith order statistic from GMEPS family of distributions is 260 

obtained by substituting expansions (12) and (13) in pdf (10) as follows 261 

 

   
1

2 2 1

0
: 1

1
1

,

0 0

( 1) (1 )

( ; )
( , )( ( ))

1
1 (1 ) .

k
x x

k

k
i n n j i

i n j i m
j n j i x

n j i m

j m

x e k x e

f x
i n i j K

i
a d x e

j

 



   

 

   



 


  



  

    
   

 

 

 

 
  

 
   

 



 

 262 

 263 

 264 
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Thus, the pdf of the ith order statistics can be formed as follows 265 

 266 

 

 1

2 2 1 1

:

0 0 ` 0

1 1 ( 1 )

,

1

1
( ; ) 1 ( 1)

( , )

1 , 0.
( ( ))

i
j

i n k

k j m

n j i n j i m k n j i m k x
n j i m kn j i m

n j i

ix
f x k

ji n i j

d a e
x x

K









 






   

  

             
    

  

 
    

    

  


267 

 268 

or  269 

 
1

2 1 ( 1)

: , ,

0 0 ` 0

( ; ) 1 ,
i

n j i m k
n j i m k x

i n j k m

k j m

f x x x e
    

  
   

      

  

   where,   270 

  1

1 1

,

, , 1

( 1)1
1 .

( , )( ( ))

n j i m k n j i
j k n j i m

j k m n j i

k a di

j i n i j K

 




       

 

  

 
   

   

271 

Another form can be written by using binomial expansion as follows: 272 

  
1

( 1) ( 1)

: , , ,

0 0 ` 0 0

( ; ) , (14)
n j i m ki

h n j i m k x

i n j k m h

k j m h

f x x e
   

     
      

   

     273 

where, 274 

  1

1 1 1

,

, , , 1

( 1)1
1 .

( , )( ( ))

h n j i m k n j i
j k n j i m

j k m h n j i

k a di m n j i k

j h i n i j K

 




        

 

  

      
    

    

 275 

In particular, the pdf of the smallest and the largest order statistics of the 276 

GMEPS distribution is obtained by substituting 1,i n , in (14), respectively, as follows 277 

( 1) ( )

1: , ,

0 ` 0 0

( ; ) ,
n j i m k

h n m k x

n k m h

k m h

f x x e
   

    
   

  

   278 

1

1

1,

, ,

( 1)1
.

( ( ))

h n m k n

k n m

k m h n

n k a dm n k

h K

 




  

    
  
 

 279 

and, 280 
1

( 1) ( 1)

: , , ,

0 0 ` 0 0

( ; ) ,
j m kn

h j m k x

n n j k m h

k j m h

f x x e
   

   
    

   

   281 

where,  282 

  1

1 1 1

,

, , 1

( 1)1
1 .

( ( ))

h j m k j
j k j m

k m h j

n k a dm j k n

h j K

  




    



    
   
    

283 

 284 

3.5    Re'nyi Entropy ( )RI x  285 

 286 

    In engineering and science various situations where entropy is used. The entropy of an 287 

r.v X is a measure of variation of the uncertainty. If X is an r.v distributed to GMEPS, 288 

then ( )RI x , for 0,  and 1,   is defined as 289 
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 1

0

( ) (1 ) log ( ; ) .R bI x f x dx


 



 

   
 
  290 

Let,  
0

( ; ) ,IP f x dx





  then IP can be written as follows: 291 

 
 

1

2 2 1 1

0

(1 )

.
( )

z
x

z
x z

za x e

IP x e dx
K







 


 

 

 


 




  

 
  

  
 
 


  292 

But  293 

   
1

1
1

1 0 1

(1 ) (1 ) , , 1,2,...
z m

x x m
z m m

z m

a
za x e a x e m

a

 

 

         
 

  

 

   
       

   
   294 

 295 

Using the same rule as provided by Gradshteyn and Ryzhik (2000), then we obtain 296 

   ,

1 0

(1 ) (1 ) .
m m

x x

m m

z m

x e d x e
 



   

    
 

 

 

 
   

 
   297 

Therefore, 298 

   
1

1 ,

1 1

(1 ) (1 ) .               (15)
z m

x x

z m

z z

za x e a d x e
 



    

   
 

 

 

 
   

 
   299 

The coefficients for 1t  are computed from the following recurrence equation: 300 

1

, , ,0

1

[ ( 1) ] , 1
t

t m t m

m

d t m t d d   





     301 

Using binomial expansion for  1
m

x , then (15) will be as follows: 302 

   
1

1 ,

1 1 0

(1 )
mz k

x m m x

z m

z z k

m
za x e a d e x

k

 



    

   
 

 

  

  
    

   
 

 

303 

Then the IP can be rewritten as follows 304 

 

 

1 ( )

1 ,

0 00

1 ( )

, 1

0 0 0 0

(1 ) ( ) ,

( ) .

m
m k m x

m

m k

m
m k h m x

m

m k h

m
IP x a x d x e dx

k

m
d x a x e dx

k h






     






   



   


  

 
  

 


   

  

 
   

 

  
   

  



 

 305 

After some simplification, then the Re'nyi entropy takes the following form 306 

1

, 1
1

( 1) 1
0 0 0

( 1) 1
( )

( ) (1 ) log .           (16)

( ( )) ( )

m
m m

R b
k h

m k h

d a k hm
I x

k h
K m

  
 

 
 

 
  

 

 




 
 

  

  
     

     
   

 

  307 
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4.   Special models of the GMEPS family 

308 

 309 

Some sub-models from GMEPS family of distributions for selected values of the 310 

parameters are presented in this section. Also, some sub-models; which are the 311 

generalized moment exponential Poisson and moment exponential Poisson distributions 312 

are discussed in more details. 313 

The sub models are considered as follows:  314 

1. For ( ) 1K e   , then the GMEPS distribution reduces to generalized moment 315 

exponential Poisson (GMEP) distribution with the following cdf: 316 

 exp 1 )
( ; ) , , , , 0.               (17)

1

xe x e
F x x

e

  



 
   

  
  


 317 

2. For ( ) 1, 1,K e    then the GMEPS distribution reduces to moment exponential 318 

Poisson (MEP) distribution with the following cdf: 319 

 exp 1 )
( ; , ) , , , 0.

1

xe x e
F x x

e

 



 
   

   
 


 320 

3. For ( ) ln(1 )K      then the GMEPS distribution reduces to generalized moment 321 

exponential logarithmic (GMEL) distribution with the following cdf: 322 

 

 
 

  

1

ln 1 1
( ; ) 1 , , , 0, 0 1.

ln(1 )

2

ln(1 ) 1 1

x

x

x

x e
F x x

x e x
f x

x e







 

  

 

 
   



  

  



 



  
     






  

 323 

4. For ( ) ln(1 ), 1,K       then the GMEPS distribution reduces to moment 324 

exponential logarithmic (MEL) distribution with the following cdf: 325 

 ln 1 1
( ; , ) 1 , 0, 0 1.

ln(1 )

xx e
F x x

 
  



       


 326 

5. For
1( ) (1 ) ,K       then the GMEPS distribution reduces to generalized moment 327 

exponential geometric (MEG) distribution with the following cdf: 328 

 
 

1 1 )
( ; ) , , , 0, 0 1. (18)

1 1 )

x

x

x e
F x x

x e





 

 


   

 





 
   

 
 329 

6. For
1( ) (1 ) , 1K        then the GMEPS distribution reduces to moment 330 

exponential geometric (MEG) distribution with the following cdf: 331 

 

 

1 1
( ; , ) , , 0, 0 1.

1 1

x

x

x e
F x x

x e






   

 





 
   

 
 332 

7.  For ( ) (1 ) 1,mK     then the GMEPS distribution reduces to generalized 333 
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moment exponential binomial (GMEB) distribution with the following cdf: 334 

 (1 ) 1 1
( ; ) , , , 0, 0 1.

(1 ) 1

m
m x

m

x e
F x x

   
   



    
    

   

335 

4.1 Generalized moment exponential Poisson distribution 336 

 337 

As mentioned above the GMEP distribution is obtained from GMEPS family 338 

distribution as a special case. The pdf of the GMEP distribution corresponding to (17) 339 

takes the following form 340 

 2 2 1 exp (1 )
( ; ) , , , , 0.

( 1)

x xx e x e
f x x

e

    



   
   

  
 



                   (19) 341 

In addition, the reliability and hazard rate function take the following form respectively: 342 

 exp 1 ) 1
( ; ) ,

1

xx e
R x

e

 



 


  
 


 343 

  344 

and,  
 

2 2 1 exp (1 )
( ; ) .

exp (1 ) 1

x x

x

x e x e
h x

x e

 



   

 

   


 

  






  
 

 345 

 346 

Figure 1, gives plots of the pdf of the GMEP distribution for some parameters values 347 

exhibiting the behavior of density. 348 

 349 

Figure 1.The pdf plots of the GMEP distribution 350 

The following figure gives the hazard rate function plots for GMEP distribution for some 351 

parameters values.   352 

1 2 3 4 5
x

0.2

0.4

0.6

0.8

f x

0.5 , 1, 0.05

0.9 , 1, 0.05

3, 1, 0.01

2, 1, 0.01

1, 1, 0.01
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  353 

  354 
Figure 2.  The hazard rate plots for the GMEP distribution 355 

 356 

It is clear from Figure 2that the GMEP distribution has increasing, decreasing and 357 

constant failure rates. 358 

 359 

The quantile function for the GMEP distribution is obtained directly from expression (8) 360 

with ( ) 1,K e   and 
1( ) ln(1 )K     as follows: 361 

 362 

1

1 ln( (1 ) )
( ( )) [ ].

p p e
Q p W

e




 

 
     363 

Solving this equation for ( ),Q p  the quantile function of GMEP is obtained. 364 

 365 

Furthermore, the rth moment about zero for the GMEP distribution is given by 366 

substituting the following pmf of truncated Poisson  367 

( ; ) , 1,2,...
!(1 )

ze
P Z z z

z e











  


 368 

in (9) as follows 369 

11

1 0 0

1
1 1

' ,

!( 1)

1,2....

z

jz

r r r
i

z j i

r
i

z j

j i
z e z

r

  








 


  

 
           

   





 

370 

Additionally the Re'nyi entropy is obtained by substituting ( ) 1,K e   in (16) as 371 

follows 372 

1

, 1
1

( 1) 1
0 0 0

( 1) 1
( )

( ) (1 ) log .

( 1) ( )

m
m m

R b
k h

m k h

d a k hm
I x

k h
e m

  
 

 
  

 
  



 




 
 

  

  
     

     
    

 


 373 

4.2 Generalized moment exponential geometric distribution 374 

 375 

The generalized moment exponential geometric distribution is discussed as the second 376 

special model from GMEPS family. The pdf of the GMEG distribution corresponding to 377 

(18) takes the following form 378 

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.5

1.0

1.5

h x

0.5 , 1, 0.05

0.9 , 1, 0.05

3, 1, 0.01

2, 1, 0.01

1, 1, 0.01
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  

2 2 1

2

(1 )
( ; ) , 0,0 1, , 0.

1 1

x

x

x e
f x x

x e





 

 

 
   

 

 




    
  
 

                      (20) 379 

 380 

 In addition, the reliability and hazard rate function take the following form: 381 

 
 

(1 ) 1 )
( ; ) ,

1 1 )

x

x

x e
R x

x e





 

 

 


 





 


 
 382 

and, 383 

    

2 2 1

( ; ) .
1 1 1 x

x
h x

x x e




  




  






   
 

 

384 

Figures 3 and 4 represent pdf and hrfs plots for GMEG distribution for some selected 385 

values of parameters. 386 

 387 

Figure.3.The pdf plots of the GMEG distribution 388 

 389 

 390 

Figure. 4. The hazard rate plots of the GMEG distribution 391 
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From this figure, it is observed that the shapes of the hrfs are increasing at some 392 

parameter values. For some choices of parameters; the distribution has increasing, 393 

decreasing and constant patterns.  394 

The quantile function for the GMEG distribution is obtained directly from expression (8) 395 

with 
1( ) (1 ) ,K      and 

1 1( ) (1 )K      as follows 396 

 397 

 

  1

11
( ( )) [ ].

1

p
Q p W

p e



 


   


 398 

Solving this equation for ( ),Q p  the quantile function GMEG is obtained. 399 

Additionally, the rth moment about zero for the GMEG distribution is given by 400 

substituting the following pmf of truncated geometric  401 
1( ; ) (1 ) , 1,2,...,zP Z z z       in (9) as follows 402 

 403 

1

11

1 0 0

(1 ) 1
1 1

' , 1,2.... (21)

z

jz

r r r
i

z j i

r
i

z j
r

j i
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
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
  

 
            

  
  404 

 405 

Further, the Re'nyi entropy is obtained by substituting 
1( ) (1 ) ,C      in (16) as 406 

follows 407 

1

, 1
1

( 1) 1
0 0 0

( 1) 1
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     
    

 

408 

 409 

5.  Parameter estimation of the GMEPS family 410 

 411 

In this section, parameters’ estimation of GMEPS family of distributions is 412 

obtained by using the maximum likelihood method. 413 

Let 1 2, ,... nX X X  be a simple random sample from the GMEPS family with set of 414 

parameters ( , , ).    The log-likelihood function based on the observed random 415 

sample of size n  is given by: 416 

 
2 2 1
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K x e

f x x e x
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2 1
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  
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   
1 1 1

ln ( ; ) ln 2 ln 2 1  ln '( ) ln( ( )).
n n n

i i i

i i i

L x n n x x K S n K      
  

        419 

 420 

where, ln ln ( ; )L L x  and   (1 ) .ix

i iS x e
 

   421 

The partial derivatives of the log-likelihood function with respect to the unknown 422 

parameters are given by: 423 

1 1 1
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i i

i i i

i i i i

K S SL n
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K S

 
 

     


   

 
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   

  
  426 

where,  427 

2 2 ln ,ixi
i i

S
x e x





 


 428 

and, 429 

2 .i
i

S
x 




 


 430 

 431 

The ML estimates of the model parameters can be found by solving the non-linear 432 

equations 
ln ln ln

0, 0, 0.
L L L

  
  

  
 These equations can be solved numerically 433 

and an iterative technique may be used through statistical software. 434 

 435 

 436 

5.1.   A Simulation Studies: 437 

 438 
 439 

 We adopt the Monte Carlo simulation study to access performance of ML 440 

estimator's of  , ,     through Mathematica 10.2 version. We generate different 441 

n sample observation from the quantile function in equation (20) above of the model 442 

GMEG distribution. The parameters are estimated by ML method. We considered 443 

different sample size =30, 50, 100, 300, 500 and 1000 and the number of repetition is 444 

10000. The true values of ,  and   with three different sets of values, in table 1 of 445 

below shows the bias with corresponding mean squared error (MSE) of the estimated 446 

parameters. We observed that the bias and Mean square error for the GMEG model given 447 

below as:  , ,    decreases. 448 

 449 

 450 

Table 1. The Bias and MSE on Monte Carlo simulation for parameters values for   451 

 the GMEG model 452 
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 453 

Parameter True value Sample size n Mean Bias MSE 

 

 

 
      

       

 

      

       2 

30n    

50n   

100n   

300n       

500n   

1000n   

2.2437 

2.2321 

2.2232 

 

2.1524 

2.0517 

2.0039 

0.2437 

0.2321 

0.2232 

 

0.1524 

0.0517 

0.0039 

1.0321 

0.9014 

0.7932 

 

0.5012 

0.3223 

0.2015 

 

 

 

     

       

 

       

       3 

30n    

50n   

100n   

300n       

500n   

1000n   

3.2537 

3.2420 

3.2412 

 

3.2015 

3.1436 

3.0219 

0.2537 

0.2420 

0.2412 

 

0.2015 

0.1436 

0.0219 

 

0.9423 

0.8317 

0.7694 

 

0.7062 

0.4319 

0.1726 

  

 

 

      

      

 

 

     0.5 

30n    

50n   

100n   

300n       

500n   

1000n   

0.6813 

0.6801 

0.6521 

 

0.5523 

0.5176 

0.5069 

0.1813 

0.1801 

0.1521 

 

0.0523 

0.0176 

0.0069 

0.4536 

0.3998 

0.3457 

 

0.1929 

0.1612 

0.0134 

 454 

 455 

Given first three sample moments, the corresponding  , ,    values are 456 

estimated from the actual theoretical first three population moments derived from (The 457 

sampling distributions of estimated  , ,     are given in Table 3 based on 458 

various sample sizes. For small samples, the percentage of estimates falling in the 459 

indicated interval increases with larger sample size. Using this range, we estimate  by 460 

the method of moments. If we include omitted data, we expect larger Mean Square Error 461 

(MSE). This MSE, however, decreases with increasing sample size. 462 

 463 

Table 2:  Percentage of sample estimates of  , ,    through method of 464 

moments (MM) for the GMEG model 465 

 466 

 467 

n 

% estimated 

values of 

parameter in 

indicated interval 

with 

 2    

% estimated 

values of 

parameter in 

indicated interval 

with 

3   

% estimated 

values of 

parameter in 

indicated 

interval with 

0.5   
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 ˆ1.4 2.6   

 

ˆ2.5 3.5 
 

 

ˆ0.3 0.7 
 

30 87.58% 86.18% 80.02% 

50 93.04% 90.26% 85.52% 

100 97.35% 93.94% 88.71% 

250 98.92% 97.42% 94.56% 

500 99.59% 99.01% 96.69% 

1000 99.86% 99.45% 98.94% 

    

6. APPLICATIONS 468 

 469 

In this section, the flexibility of some special models of GMEPS family is 470 

examined using two real data sets. We illustrate the superiority of new selected 471 

distribution as compared with some sub-models. 472 

 473 

 6.1  Aircraft Windshield data set 474 
 475 

The first data set correspond the failure times of 84 for a particular model 476 

aircraft windshield. This data are reported in the book "Weibull Models" by Murthy et 477 

al.(2004, p.297)[12]. This data consist of 84 failed windshield, the unit for measurement 478 

is 1000 h. The data are :0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 479 

0.309,1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 480 

1.070,1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 481 

1.281,2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 482 

1.432,2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 483 

1.506,2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 484 

1.619,2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 485 

1.757,2.324, 3.376, 4.663. 486 

We estimated unknown parameters of the distribution by maximum likelihood 487 

method as describe in section 5 by using the R code to find the best fit of the data. We 488 

use some measures of goodness of fit, including Kolmogorov Smirnov (K-S),                489 

For this real data set, we have fitted generalized moment exponential geometric, Weibull 490 

distribution, exponentiated exponential distribution and exponential distribution. 491 

 492 

Table 3. Criteria for comparison for second data set 493 

 

 

 

 

 

 

 

 

 

 503 

Model 

 
sk   AIC  CAIC  BIC  

GMEG 0.681 263.58 195.89 268.96 

WD 0.742 264.10 205.06 270.87 

EE 0.721 283.68 227.93 288.54 

E 0.694 327.75 218.85 330.18 
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Smaller values of these statistics indicate a better fit. Tables 3 and 4 compare the 504 

GMEG distribution with the WD, EE, and E. Moreover, values of K-S, AIC, AICC, and 505 

BIC, are listed in Tables 4. According to the criterion K-S, AIC, AICC, and BIC, we 506 

found that GMEG distribution is the best fitted model than the models WD, EE, and E 507 

distributions for the Aarset data set and for the aircraft windshield data set. So, the 508 

GMEG model could be chosen as the best model. The histogram of two data sets and the 509 

estimated PDFs, CDFs and P-P plots for the fitted data model are displayed in Figures (5, 510 

6, 7, 8, 9, 10 ).  It is clear from Tables 4 and Figures (5, 6, 7, 8, 9, 10) that the GMEG 511 

provides a better fit to the histogram and therefore could be chosen as the best model for 512 

both data set.  Also the plots of the estimated densities and estimated cumulative of the 513 

fitted models are achieved in Figures 5 and 6. 514 

 515 
Figure 5.  Estimated densities of models for the second data set 516 

 517 
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 518 

 519 
      Figure 6   Estimated cumulative densities of models for the first data set 520 

 521 

 522 
                  523 

  524 

        Figure 7: The probability–probability plots for the aircraft windshield data 525 

set 526 
 527 

6.2   2nd data set 528 

 529 

The second data set represents the survival times (in days) of 72 guinea pigs infected 530 

with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). The data are as 531 

follows:  532 

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 533 

1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 534 

1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,  535 

2.13,  2.15,  2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 2.93, 3.27,  3.42, 3.47, 536 

3.61, 4.02, 4.32, 4.58, 5.55,  2.54, 0.77. 537 

 538 

Table 4.  Criteria for comparison for 2nd data set 539 

 540 

 

 

 

 

 

 

 

 

 

Model 

 
sk   AIC  CAIC  BIC  

GMEG 0.823 193.53 193.87 200.34 

WD 0.832 196.06 196.22 200.60 

EE 0.853 194.95 195.33 201.50 

E 0.844 226.89 226.95    229.16 
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 550 

        For the second data set, the values of k-s, AIC, BIC and CAIC are record in table 4  551 

 552 

The plots of the estimated cumulative and estimated densities of the fitted 553 

models are achieved in Figures. 8 and 9 respectively. 554 

 555 
Figure 8.  Estimated densities of models for the Bjerkedal (1960) data set 556 

 557 

 558 
Figure. 9.  Estimated cumulative densities of models for the second data set 559 

 560 

 561 
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 562 
 563 

       Figure 10: The probability–probability plots for the Bjerkedal (1960) data set 564 

 565 

It is clear from the above two figures that the new model GMEG has the best fit in the 566 

class of its competitor distributions.  567 

 568 

7.  Conclusion 569 
 570 

We introduce a new class of lifetime models called the generalized moment 571 

exponential power series. This new family is obtained by compounding the generalized 572 

moment exponential distribution and truncated power series distributions. More 573 

specifically, the generalized moment exponential power series covers several new 574 

distributions. Also, mathematical properties of the new family, including expressions for 575 

density function, moments, moment generating function, quantile function, order 576 

statistics and entropy are provided. The hazard function has various shapes such as 577 

increasing, decreasing, and bathtub. By simulation procedures it is discovered that the 578 

ML estimators are consistent since the bias and MSE approach to zero when the sample 579 

size increases. The usefulness of the model associated with this family is illustrated by 580 

two real data sets and the new model provides a better fit than the models provided in 581 

literature. 582 

 583 
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